Fermentation of glycerol using Clostridium butyricum for the production of 1,3-Propanediol in a Fed-batch bioreactor using advanced controllers

  • Tomás Pröschle, 

  • Diego Ávalos
  • Alejandro Sepúlveda, 
  • Francisco Llull,
  • Francisco Ibáñez,
  • José Ricardo Pérez-Correa 
  • a,b.c.d.e.f  Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de
    Chile, Av. Vicuña Mackenna 4860, Casilla 306 Correo 22, Santiago, Chile
Cite as
Pröschle T., Ávalos D., Sepúlveda A., Llull F., Ibáñez F., Pérez-Correa J.R. (2021). Fermentation of glycerol using Clostridium butyricum for the production of 1,3-Propanediol in a Fed-batch bioreactor using advanced controllers. Proceedings of the 20th International Conference on Modeling & Applied Simulation (MAS 2021), pp. 170- 175. DOI: https://doi.org/10.46354/i3m.2021.mas.021

Abstract

Due to the continuous growth of soap, detergent, and biodiesel industries, glycerol production as a byproduct has increased substantially, resulting in a significant reduction of its price. Glycerol can be fermented with many bacterial strains to produce several valuable chemicals like 1,3-propanediol (1,3-PD). This organic compound is highly versatile, useful for producing a wide range of polymers such as polyesters, polyester, polyurethane, and trimethylene terephthalate; hence, the industrial production of 1,3-PD is highly appealing. The fed-batch cultivation of Clostridium butyricum, using glycerol as substrate, was simulated using Matlab-Simulink and an Orthogonal Collocations on Finite Elements procedure (OCFE) was implemented, using AMPL software, to find the optimal path of substrate concentration in the reactor that could maximize the production of 1,3-PD. Then a Model Predictive Control (MPC) was applied to follow the optimal setpoints, given by AMPL, of substrate concentration and temperature reactor. Finally, the performance achieved in 40 hours of simulation, with a final concentration and productivity of 74.94 g/L and 1.874 g/L/h respectively, gave similar results of 1,3-PD production by other microorganisms like C. diolis and K. pneumoniae.

References

  1. (2017). Preeminent productivity of 1,3-propanediol by Clostridium butyricum JKT37 and the role of using calcium carbonate as pH neutraliser in glycerol fer mentation. Bioresource Technology, 233:296–304. 
  2. Burnham, A. K. (2010). Estimating the Heat of Forma tion of Foodstuffs and Biomass. (December 2010):1– 11. 
  3. Colin, T., Bories, A., Lavigne, C., and Moulin, G. (2001). Effects of acetate and butyrate during glycerol fer mentation by Clostridium butyricum. Current Micro biology, 43(4):238–243. 
  4. Junghare, M., Subudhi, S., and Lal, B. (2012). Improve ment of hydrogen production under decreased partial pressure by newly isolated alkaline tolerant anaer obe, clostridium butyricum tm-9a: Optimization of 
    process parameters. International Journal of Hydrogen Energy, 37(4):3160–3168. International Conference on Renewable Energy (ICRE 2011). 
  5. Kanjilal, B. (2015). Fermentative Production Of 1 , 3- Propanediol From Industrial Glycerol And Its Perva porative Enrichment From Aqueous Mixtures. 
  6. Kaur, G., Srivastava, A. K., and Chand, S. (2012a). De termination of kinetic parameters of 1,3-propanediol fermentation by Clostridium diolis using statistically optimized medium. Bioprocess and Biosystems Engi neering, 35(7):1147–1156. 
  7. Kaur, G., Srivastava, A. K., and Chand, S. (2012b). Math ematical modelling approach for concentration and productivity enhancement of 1,3-propanediol using 
    Clostridium diolis. Biochemical Engineering Journal, 68:34–41. 
  8. Kaur, G., Srivastava, A. K., and Chand, S. (2013). Bio conversion of glycerol to 1,3-propanediol: A mathe matical model-based nutrient feeding approach for high production using Clostridium diolis. Bioresource Technology, 142:82–87. 
  9. Liu, C., Gong, Z., Shen, B., and Feng, E. (2013). Modelling and optimal control for a fed-batch fer mentation process. Applied Mathematical Modelling, 37(3):695–706. 
  10. Liu, C., Gong, Z., Teo, K. L., Sun, J., and Caccetta, L. (2017). Robust multi-objective optimal switch ing control arising in 1,3-propanediol microbial fed batch process. Nonlinear Analysis: Hybrid Systems, 25:1–20. 
  11. Niu, T., Zhai, J., Yin, H., and Feng, E. (2018). Optimal control of nonlinear switched system in an uncoupled microbial fed-batch fermentation process. Journal of the Franklin Institute, 355(14):6169–6190. 
  12. Ross, A., Tag, C., and Gunzel, B. (1994). Multiple Prod uct Inhibition and Growth Modeling of. Biotechnology and Bioengineering, 44:902–911. 
  13. Santibáñez, C., Varnero, M. T., and Bustamante, M. (2011). Residual glycerol from biodiesel Manu facturing, waste or potential source of Bioenergy: A review. Chilean Journal of Agricultural Research, 71(3):469–475. 
  14. Silva, J. P., Almeida, Y. B., Pinheiro, I. O., Knoelchel mann, A., and Silva, J. M. (2015). Multiplicity of steady states in a bioreactor during the production of 1,3-propanediol by Clostridium butyricum. Bio process and Biosystems Engineering, 38(2):229–235.