Mathematical and numerical investigations of diffusion in silicon based solar cells 

  • Abderrazzak El Boukili 
  • Al Akhawayn University, P.O. Box 104 Avenue Hassan II, Ifrane, 53000, Morocco
Cite as
El Boukili A. (2021). Mathematical and numerical investigations of diffusion in silicon based solar cells . Proceedings of the 9th International Workshop on Simulation for Energy, Sustainable Development & Environment (SESDE 2021), pp. 38-44. DOI: https://doi.org/10.46354/i3m.2021.sesde.005

Abstract

The goal of this paper is to develop and apply an accurate mathematical model to investigate and optimize the effects of texturing on the diffusion of dopants in modern textured solar cells. This investigation will help out the manufacturers and designers of solar cells optimize the texturing geometry and its parameters. The findings in this paper will also help maximize the optical and electrical performance of innovative solar cells and reduce their production cost. For example, non-optimized texturing pyramids obtained from a texturing chemical reaction will reduce the absorption of the sun light. It will also cause excessive defects on the surface of the cell which will affect negatively the diffusion of dopants and the solar cell efficiency. We found that texturing angles around 30° could improve both the diffusion of dopants and the efficiency of the solar cell. Two dimensional numerical results showing the effects of texturing geometry on boron ion diffusion in a sample solar cell will be presented, analyzed, and validated with literature.

References

  1. Bothe, K., Sinton, R., and Schmidt, J. (2005). Fundamental boron-oxygen-related carrier lifetime limit in mono- and multicrystalline silicon. Progress in Photovoltaics Research and Applications 13(4):287 – 296. 
  2. Ho, W., Huang, Y., Hsu, W., Chen, Y., and Liu, C. (2011). Ion implanted boron emitter N-silicon solar cells with wet oxide passivation. 37th IEEE Photovoltaic Specialists Conference, Seattle, WDC, USA. 
  3. Fabian, K., Tobias, O., Robby, P., and Rolf, B. (2011). Analyzing the recombination current densities in industrial like n-type PERT solar cells exceeding 20% efficiency. 23rd IEEE Photovoltaic Specialists Conference, Seattle, WDC, USA. 
  4. Kveder, V., Kittler, M., and Schroter, W. (200)1. Recombination activity of contaminated dislocations in silicon: A model describing electron-beam-induced contrast behavior. Physics Review, B, 63:115208. 
  5. Benick, J., Hoew, B., Van, M., Kessels, O., Schultz, O., and Glunz, W. (2008). High efficiency n-type si solar cells on alo-passivated boron emitters. Applied Physics Letters, Vol., 92:253504. 
  6. Benick, J., Hoew, B., Dingemans, G., Richter, A., Hermle, M., and Glunz, W. (2009). High efficiency n-type si solar cells with front side boron emitter. Proceedings of the 24th European Photovoltaic Solar Energy Conference, 863-870. 
  7. Ohrdes, T., Steingrube, S., Wagner, H., Zechner, C., Letay, G., Chen, R., Dunham, S., and Altermatt, P. (2011). Solar cell emitter design with pv-tailored implantation. Energy Procedia, Vol., 8:167-173.    
  8. Zimbardi, F., Upadhyaya, D., Tao, Y., OK, Y., Ning, S., and Rohatgi, A. (2012). Ion implanted and screen-printed large area 19.6% efficiency n-type bifacial si solar cell. Photovoltaic Specialits Conference, 002240-002243.     
  9. Rohatgi, A., Meier, B., McPherson, B., OK, Y., Upadhyaya, D., Lai, H., and Zimbardi, F. (2012). High-throughput ion-implantation for low-cost high efficiency silicon solar cells. Energy Procedia, Vol., 15:10-19.  
  10. Glunz, S., Rein, S., Lee, J., and Warta, W. (2001). Minority carrier lifetime degradation in boron doped czochralski silicon. Journal of Applied Physics, Vol., 90, 5:2397-2404. 
  11. Geerligs, L. and Machdonald, L. (2004). Recombination activity of interstitial iron and other transition metal point defects in p-type crystalline silicon. Applied Physics Letters, Vol., 85, 18:4061-4063. 
  12. Coletti, G., Mihailetchi, V., Komatsu, Y., Geerligs, L., Kvande, R., Arnberg, L. Wambach, K., Knopf, C., Kopecek, R. and Weeber, A. (2012). Large area screen printed n-type base silicon solar cells with efficiency exceeding 18%. Solar energy, Vol., 2011:2010. 
  13. Benick, J., Hoex, B., Dingemans, G., Richter, A., Hermle, M. and Glunz, S. (2009). High efficiency n-type silicon solar cells with front side boron emitter. Proceedings of the 24th European Photovoltaic Solar nergy Conference, 863-870. 
  14. Meier, D. and Rohatgi, A. (2010). Developing novel low-cost, high-throughput processing techniques for 20% efficient monocrystalline silicon solar cells. Photovoltaics Internation, Vol. 10:87-93. 
  15. Bateman, N., Sullivan, P., Reichel, C., Benick, J., Hermle, D., and Rohatgi, D., A. (2011). High quality ion implanted boron emitters in an inter-digitated back contact solar cell with 20% efficiency. Energy Procedia, Vol., 8:509-514.
  16. Ryu, K., Upadhyaya, A., Ok, W., Xu, H., Metin, L., and Rohatgi, N. (2012). High efficiency n-type solar cells with screen-printed boron emitters and ion-implanted back surface field. Photovoltaic Specialists Conference, 38th IEEE, 002247-002249. 
  17. El Boukili, A. (2019). Modeling and analysis of the impact of texturing angles on doping profiles in ion implanted N-type solar cells. Proceedings of the 7th International Workshop on Simulation for Energy, Sustainable Development & Environment (SESDE 2019), 1-6. DOI: https://doi.org/10.46354/i3m.2019.sesde.001.