Circular economy for sustainable building: environmental and economic impacts of a green mortar with foundry sand waste 

  • Marco Bergonzoni 
  • Riccardo Melloni, 
  • Lucia Botti  
  • a,b Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, via Pietro Vivarelli 10, Modena, 41125, Italy
  • b,c  Interdepartment Research Center on Security and Safety (CRIS), University of Modena and Reggio Emilia, via Pietro Vivarelli 10, Modena, 41125, Italy
Cite as
Bergonzoni M., Melloni R., Botti L. (2021). Circular economy for sustainable building: environmental and economic impacts of a green mortar with foundry sand waste . Proceedings of the 9th International Workshop on Simulation for Energy, Sustainable Development & Environment (SESDE 2021), pp. 45-54. DOI: https://doi.org/10.46354/i3m.2021.sesde.006

Abstract

The study of solid waste reuse and recycle for sustainable construction is attracting the attention of researchers and practitioners due to the low cost, the high availability and the potential properties of waste materials. This paper introduces a research aimed at analyzing the economic and environmental impacts of a sustainable construction material, i.e. an innovative green mortar. Such mortar was obtained from the reuse of the foundry sands of an Italian automotive company. The aim was to realize a sustainable product, proposing the reuse and the valorization of the wastage left over of a manufacturing process. In this paper, the characteristics of the green mortar as a cement aggregate replacement were investigated, together with the economic and the environmental impacts of such material. The methodologies adopted in this research include the Life Cycle Assessment of the green mortar and the cost-benefit analysis for the production process. The results confirm that the adoption of a circular economy-based management for the foundry sands would allow economic and environmental benefits for all the actors involved in the supply chain of the green mortar.

References

  1. Aadi, A. S., Mohammed Ali, T. K., Ali, R. A. A., & Salman, M. M. (2021). The mechanical properties of green mortar contained aluminum wastes as substitution of sand. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.12.812
  2. Adamson, M., Razmjoo, A., & Poursaee, A. (2015). Durability of concrete incorporating crushed brick as coarse aggregate. Construction and Building Materials, 94. https://doi.org/10.1016/j.conbuildmat.2015.07.056
  3. AITEC. (2018). Rapporto Annuale 2017.http://www.springerlink.com/index/10.1007/s10458-004-6975-9.
  4. Akhtar, A., & Sarmah, A. K. (2018). Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. Journal of Cleaner Production, 186. https://doi.org/10.1016/j.jclepro.2018.03.085
  5. Alqahtani, F. K., Rashid, K., Zafar, I., Iqbal Khan, M., & Ababtain, A. A. (2021). Production of sustainable green mortar by ultrahigh utilization of fly ash: Technical, economic and environmental assessment. Construction and Building Materials, 281. https://doi.org/10.1016/j.conbuildmat.2021.122617
  6. Amin, S. K., Allam, M. E., Garas, G. L., & Ezz, H. (2020). A study of the chemical effect of marble and granite slurry on green mortar compressive strength. Bulletin of the National Research Centre, 44(1). https://doi.org/10.1186/s42269-020-0274-8
  7. M. (2018). Valutazione dei progetti tramite l’analisi Costi Benefici. http://www.asfim.org/la-valutazione-dei-progetti-secondo-il-metodo-dellanalisi-costi-benefici/
  8. eh, M., & Aydin, E. (2020). Data for bottom ash and marble powder utilization as an alternative binder for sustainable concrete construction. Data in Brief, 29. https://doi.org/10.1016/j.dib.2020.105160
  9. n, E., & Arel, H. Ş. (2019). High-volume marble substitution in cement-paste: Towards a better sustainability. Journal of Cleaner Production, 237. https://doi.org/10.1016/j.jclepro.2019.117801
  10. rdwaj, B., & Kumar, P. (2017). Waste foundry sand in concrete: A review. In Construction and Building Materials (Vol. 156). https://doi.org/10.1016/j.conbuildmat.2017.09.010
  11.  O. (2014). Experimental analysis of properties of recycled coarse aggregate (RCA) concrete with mineral additives. Construction and Building Materials, 68. https://doi.org/10.1016/j.conbuildmat.2014.06.032
  12. min, P., & Gaillochet, C. (2009). From waste to resource. … Abstract of World Waste Survey, Cyclope, Veolia ….
  13. ndra Paul, S., Šavija, B., & Babafemi, A. J. (2018). A comprehensive review on mechanical and durability properties of cement-based materials containing waste recycled glass. In Journal of Cleaner Production (Vol
    https://doi.org/10.1016/j.jclepro.2018.07.095. 198).
  14. nvent. (2021). Ecoinvent. The world’s mostconsistent & transparentlife cycle inventory database. https://www.ecoinvent.org
  15. ctiv. (2011). Resource efficiency: towards a circular economy? (Issue October). http://www.euractiv.com/specialreport-towards-a-recycling-society%0A
  16. pean Commission. (2014). Towards a circular economy: A zero waste programme for Europe. European Commission, 398, 1–14. https://ec.europa.eu/environment/circular-economy/pdf/circular-economy-communication.pdf
  17. pean Commission. (2019). The European Green Deal. European Commission, 53(9), 24. https://doi.org/10.1017/CBO9781107415324.004
  18. pean Commission. (2020). A new Circular Economy Action Plan For a cleaner and more competitive Europe EN. European Commission, 1–20. https://doi.org/COM/2020/98 final
  19. pean Parliament, & European Council. (2008). European Waste Directive 2008/98/EC. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. European Parlament.
  20. Faridmehr, I., Huseien, G. F., & Baghban, M. H. (2020). Evaluation of mechanical and environmental properties of engineered alkali-activated green mortar. Materials, 13(18). https://doi.org/10.3390/ma13184098

  21. koǧlu, B., Türkel, S., & Baradan, B. (2007). Effect of water/cement ratio on the fresh and hardened properties of self-compacting concrete. Building and Environment, 42(4). https://doi.org/10.1016/j.buildenv.2006.01.012
  22. Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The Circular Economy – A new sustainability paradigm? In Journal of Cleaner Production (Vol. 143). https://doi.org/10.1016/j.jclepro.2016.12.048
  23. Goedkoop, M., Heijungs, R., Huijbregts, M., Schryver, A. de, Struijs, J., & Zelm, R. van. (2008). ReCiPe 2008 - A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. In Ruimte en Milieu.
  24. Gupta, S., Kua, H. W., & Koh, H. J. (2018). Application of biochar from food and wood waste as green admixture for cement mortar. Science of the Total Environment, 619–620. https://doi.org/10.1016/j.scitotenv.2017.11.044
  25. Gurumoorthy, N., & Arunachalam, K. (2019). Durability Studies on Concrete Containing Treated Used Foundry Sand. Construction and Building Materials, 201. https://doi.org/10.1016/j.conbuildmat.2019.01.014
  26. Hayles, C. S., & Kooloos, T. (2008). The challenges and opportunities for sustainable building practices. Construction in Developing Countries International Symposium, January.
  27. He, X., Zheng, Z., Yang, J., Su, Y., Wang, T., & Strnadel, B. (2020). Feasibility of incorporating autoclaved aerated concrete waste for cement replacement in sustainable building materials. Journal of Cleaner Production, 250. https://doi.org/10.1016/j.jclepro.2019.119455
  28. Hollberg, A., Genova, G., & Habert, G. (2020). Evaluation of BIM-based LCA results for building design. Automation in Construction, 109. https://doi.org/10.1016/j.autcon.2019.102972
  29. Hollberg, A., Kiss, B., Röck, M., Soust-Verdaguer, B., Wiberg, A. H., Lasvaux, S., Galimshina, A., & Habert, G. (2021). Review of visualising LCA results in the design process of buildings. In Building and Environment (Vol. 190). https://doi.org/10.1016/j.buildenv.2020.107530
  30. Hoornweg, D., Bhada-Tata, P., & Kennedy, C. (2015). Peak Waste: When Is It Likely to Occur? Journal of Industrial Ecology, 19(1). https://doi.org/10.1111/jiec.12165
  31. Hossain, M. U., & Thomas Ng, S. (2019). Influence of waste materials on buildings’ life cycle environmental impacts: Adopting resource recovery principle. Resources, Conservation and Recycling, 142. https://doi.org/10.1016/j.resconrec.2018.11.010
  32. Ibáñez-Forés, V., Pacheco-Blanco, B., Capuz-Rizo, S. F., & Bovea, M. D. (2016). Environmental Product Declarations: Exploring their evolution and the factors affecting their demand in Europe. Journal of Cleaner Production, 116. https://doi.org/10.1016/j.jclepro.2015.12.078
  33. Invernizzi, D. C., Locatelli, G., Velenturf, A., Love, P. E., Purnell, P., & Brookes, N. J. (2020). Developing policies for the end-of-life of energy infrastructure: Coming to terms with the challenges of decommissioning. Energy Policy, 144. https://doi.org/10.1016/j.enpol.2020.111677
  34. Kanadasan, J., Razak, H. A., & Subramaniam, V. (2018). Properties of high flowable mortar containing high volume palm oil clinker (POC) fine for eco-friendly construction. Journal of Cleaner Production, 170. https://doi.org/10.1016/j.jclepro.2017.09.068
  35. Kaza, S., Yao, L., Bhada-Tata, P., & van Woerden, F. (2018). What a waste 2.0. A global snapshot of solid waste management to 2050. https://doi.org/10.1596/978-1-4648 -1329-0
  36. Kaza, S., Yao, L., Bhada-Tata, P., & van Woerden, F. (2018). What a waste 2.0. A global snapshot of solid waste management to 2050. http
  37.  L., Liu, W., You, Q., Chen, M., & Zeng, Q. (2020). Waste ceramic powder as a pozzolanic supplementary filler of cement for developing sustainable building materials. Journal of Cleaner Production, 259. https://doi.org/10.1016/j.jclepro.2020.120853
  38. Macarthur, E. (2020). Towards the circular economy - Economic and Business Rationale for an Accelerated transition. Ellen Macarthur Foundation Rethink the Future.
  39. Makul, N., & Sua-Iam, G. (2018). Innovative utilization of foundry sand waste obtained from the manufacture of automobile engine parts as a cement replacement material in concrete production. Journal of Cleaner Production, 199. https://doi.org/10.1016/j.jclepro.2018.07.167
  40. Martins, M. A. de B., Barros, R. M., Silva, G., & Santos, I. F. S. dos. (2019). Study on waste foundry exhaust sand, WFES, as a partial substitute of fine aggregates in conventional concrete. Sustainable Cities and Society, 45. https://doi.org/10.1016/j.scs.2018.11.017
  41. Massoudinejad, M., Amanidaz, N., Santos, R. M., & Bakhshoodeh, R. (2019). Use of municipal, agricultural, industrial, construction and demolition waste in thermal and sound building insulation materials: A review article 09 Engineering 0912 Materials Engineering. In Journal of Environmental Health Science and Engineering (Vol. 17, Issue 2). https://doi.org/10.1007/s40201-019-00380-z
  42. Matos, P. R. de, Marcon, M. F., Schankoski, R. A., & Prudêncio, L. R. (2019). Novel applications of waste foundry sand in conventional and dry-mix concretes. Journal of Environmental Management, 244. https://doi.org/10.1016/j.jenvman.2019.04.048
  43. Menikpura, S. N. M., Sang-Arun, J., & Bengtsson, M. (2013). Integrated Solid Waste Management: An approach for enhancing climate co-benefits through resource recovery. Journal of Cleaner Production, 58. https://doi.org/10.1016/j.jclepro.2013.03.012
  44. Mohammadhosseini, H., Lim, N. H. A. S., Tahir, M. M., Alyousef, R., & Samadi, M. (2019). Performance evaluation of green mortar comprising ceramic waste as cement and fine aggregates replacement. SN Applied Sciences, 1(6). https://doi.org/10.1007/s42452-019-0566-5
  45. Nahi, S., Leklou, N., Khelidj, A., Oudjit, M. N., & Zenati, A. (2020). Properties of cement pastes and mortars containing recycled green glass powder. Construction and Building Materials, 262. https://doi.org/10.1016/j.conbuildmat.2020.120875
  46. Napolano, L., Menna, C., Graziano, S. F., Asprone, D., D’Amore, M., de Gennaro, R., & Dondi, M. (2016). Environmental life cycle assessment of lightweight concrete to support recycled materials selection for sustainable design. Construction and Building Materials, 119. https://doi.org/10.1016/j.conbuildmat.2016.05.042
  47. Obaid, M. K., Nasr, M. S., Ali, I. M., Shubbar, A. A., & Hashim, K. S. (2021). Performance of green mortar made from locally available waste tiles and silica fume. Journal of Engineering Science and Technology, 16(1).
  48. Pandey, S., & Agarwal, A. (2019). Cost Optimization by Utilization of Waste Material (Foundry Sand). International Journal of Current Engineering and Technology, 9(1), 59–61. https://doi.org/https://doi.org/10.14741/ijcet/v.9.1.9
  49. Reike, D., Vermeulen, W. J. V., & Witjes, S. (2018). The circular economy: New or Refurbished as CE 3.0? — Exploring Controversies in the Conceptualization of the Circular Economy through a Focus on History and Resource Value Retention Options. Resources, Conservation and Recycling, 135. https://doi.org/10.1016/j.resconrec.2017.08.027
  50. Restuccia, L. (2019). Fracture properties of green mortars with recycled sand. Frattura Ed Integrita Strutturale, 13(49). https://doi.org/10.3221/IGF-ESIS.49.61
  51. Rosasco, P., & Perini, K. (2018). Evaluating the economic sustainability of a vertical greening system: A Cost-Benefit Analysis of a pilot project in mediterranean area. Building and Environment, 142. https://doi.org/10.1016/j.buildenv.2018.06.017
  52. Roy, R., & Sairam, V. (2019). Effect of Silica Fume and Foundry waste sand on strength characteristics of Geogrid and Ferro cement panel. Materials Today: Proceedings, 7. https://doi.org/10.1016/j.matpr.2018.11.097
  53. Safari, K., & AzariJafari, H. (2021). Challenges and opportunities for integrating BIM and LCA: Methodological choices and framework development. In Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2021.102728
  54. Serres, N., Braymand, S., & Feugeas, F. (2016). Environmental evaluation of concrete made from recycled concrete aggregate implementing life cycle assessment. Journal of Building Engineering, 5. https://doi.org/10.1016/j.jobe.2015.11.004
  55. Shekdar, A. v. (2009). Sustainable solid waste management: An integrated approach for Asian countries. Waste Management. https://doi.org/10.1016/j.wasman.2008.08.025
  56. Shi, C., Li, Y., Zhang, J., Li, W., Chong, L., & Xie, Z. (2016). Performance enhancement of recycled concrete aggregate - A review. In Journal of Cleaner Production (Vol. 112). https://doi.org/10.1016/j.jclepro.2015.08.057
  57. Siddique, R., & Singh, G. (2011). Utilization of waste foundry sand (WFS) in concrete manufacturing. Resources, Conservation and Recycling, 55(11), 885–892. https://doi.org/10.1016/J.RESCONREC.2011.05.001
  58. Tam, V. W. Y., Soomro, M., & Evangelista, A. C. J. (2018). A review of recycled aggregate in concrete applications (2000–2017). Construction and Building Materials, 172. https://doi.org/10.1016/j.conbuildmat.2018.03.240
  59. Thanon Dawood, E., & Hani Abdullah, M. (2020). Behavior of non-reinforced and reinforced green mortar with fibers. Open Engineering, 11(1). https://doi.org/10.1515/eng-2021-0006
  60. The Ellen MacArthur Foundation. (2012). Towards a Circular Economy - Economic and Business Rationale for an Accelerated Transition. Greener Management International.
  61. The International Standards Organisation. (2006). Iso 14044. In The International Journal of Life Cycle Assessment (Vol. 2006, Issue 7).
  62. Thorneycroft, J., Orr, J., Savoikar, P., & Ball, R. J. (2018). Performance of structural concrete with recycled plastic waste as a partial replacement for sand. Construction and Building Materials, 161. https://doi.org/10.1016/j.conbuildmat.2017.11.127
  63. Václavík, V., Ondová, M., Dvorský, T., Eštoková, A., Fabiánová, M., & Gola, L. (2020). Sustainability potential evaluation of concrete with steel slag aggregates by the lca method. Sustainability (Switzerland), 12(23). https://doi.org/10.3390/su12239873
  64. Wang, J., & Wang, S. (2019). Preparation, modification and environmental application of biochar: A review. In Journal of Cleaner Production (Vol. 227). https://doi.org/10.1016/j.jclepro.2019.04.282
  65. Wang, Z., & Geng, L. (2015). Carbon emissions calculation from municipal solid waste and the influencing factors analysis in China. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2015.05.062
  66. Zhan, B. J., Xuan, D. X., Poon, C. S., & Shi, C. J. (2016). Effect of curing parameters on CO2 curing of concrete blocks containing recycled aggregates. Cement and Concrete Composites, 71. https://doi.org/10.1016/j.cemconcomp.2016.05.002
  67. Zimmermann, M., Althaus, H.-J., & Haas, A. (2005). Benchmarks for sustainable construction: A contribution to develop a standard. Energy and Buildings, 37(11), 1147–1157. https://doi.org/10.1016/J.ENBUILD.2005.06.017