Optimization of Complex Thermally Electrically Coupled Buildings using Genetic Programming to Identify Optimal Energy Flow Controllers

  • Kathrin Kefer 
  • Patrick Kefer, 
  • Roland Hanghofer,
  • Markus Stöger,
  • Bernd Hofer,
  • Michael Affenzeller ,
  • Stephan Winkler 
  • a,d,e Research & Development FH OÖ Forschungs und Entwicklungs GmbH: Research Group Heuristic and Evolutionary
    Algorithms Laboratory, Softwarepark 11, Hagenberg, A-4232, Austria
  • Research & Development FH OÖ Forschungs und Entwicklungs GmbH: Research Group ASIC, Ringstraße 43a, Wels, A-4600, Austria
  • f.g Research & Development FH OÖ Forschungs und Entwicklungs GmbH: Research Group Heuristic and Evolutionary
    Algorithms Laboratory, Softwarepark 11, Hagenberg, A-4232, Austria 
  • 4Dynatrace Austria GmbH, Softwarepark 32, Hagenberg, A-4232, Austria
Cite as
Kefer K., Kefer P., Hanghofer R., Stöger M., Hofer B., Affenzeller M., Winkler S. (2021). Optimization of Complex Thermally Electrically Coupled Buildings using Genetic Programming to Identify Optimal Energy Flow Controllers. Proceedings of the 9th International Workshop on Simulation for Energy, Sustainable Development & Environment (SESDE 2021), pp. 55-65. DOI: https://doi.org/10.46354/i3m.2021.sesde.007

Abstract

During the last years, renewable energy sources and their management have become increasingly important to help driving forward the energy transition and slow down the global warming. Current energy management systems are either simple but not optimal or very complex, computationally intensive and optimal. Despite that, they also often focus on the optimization of just the electrical energy ows of buildings so far. This work focuses on the development of a linear model predictive controller as well as heuristic energy ow controllers for optimizing a complex thermally-electrically coupled system. For that, a real
world building is modelled in MATLAB Simulink and used for the training process of the heuristic controllers as well as for the evaluation of the different optimizers in simulation with different timespans. It is found that the linear MPC works better than a rule-based self consumption optimization and that the heuristic controllers work significantly better than these two for all evaluation timespans up to 180 days, while they perform significantly worse for 364 days.

References

  1. (2020). MATLAB version 9.3.0.713579 (R2020b). The Math works, Inc., Natick, Massachusetts. 
  2. Affenzeller, M. and Wagner, S. (2005). Offspring selection: A new self-adaptive selection scheme for genetic algo rithms. In Adaptive and natural computing algorithms, pages 2187–221. Springer. 
  3. Alimohammadisagvand, B., Jokisalo, J., and Sirén, K. (2018). Comparison of four rule-based demand re sponse control algorithms in an electrically and heat pump-heated residential building. Applied Energy, 209:167–179. 
  4. Arabali, A., Ghofrani, M., Etezadi-Amoli, M., Fadali, M. S., and Baghzouz, Y. (2012). Genetic-algorithm-based opti mization approach for energy management. IEEE Trans actions on Power Delivery, 28(1):162–170. 
  5. aWATTar. awattar. https://www.awattar.com/. Chen, C., Wang, J., Heo, Y., and Kishore, S. (2013). Mpc based appliance scheduling for residential building en ergymanagement controller. IEEE Transactions on Smart Grid, 4(3):1401–1410. 
  6. De Coninck, R., Baetens, R., Saelens, D., Woyte, A., and Helsen, L. (2014). Rule-based demand-side manage ment of domestic hot water production with heat pumps in zero energy neighbourhoods. Journal of Building Per formance Simulation, 7(4):271–288. 
  7. Deb (2001). Multi-objective optimisation using evolution ary algorithms. volume 16, page 247. John Wiley & Sons. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):182–197. 
  8. Eseye, A. T., Zheng, D., Zhang, J., and Wei, D. (2016). Opti mal energy management strategy for an isolated indus trial microgrid using a modified particle swarm opti mization. In 2016 IEEE international conference on power and renewable energy (ICPRE), pages 494–498. IEEE. 
  9. GmbH, F. I. Fronius energy management system. https: //rb.gy/2fehaf. Accessed: 2020-08-27. 
  10. GmbH, F. I. Fronius ohmpilot. https://www. fronius.com/en/solar-energy/installers-partners/ technical-data/all-products/solutions/ fronius-solution-for-heat-generation/  fronius-ohmpilot/fronius-ohmpilot. 
  11. Godina, R., Rodrigues, E. M. G., Pouresmaeil, E., Matias, J. C. O., and Catalão, J. P. S. (2018). Model predictive control home energy management and optimization strategy with demand response. Applied Sciences, 8(3). 
  12. Gonçalves, I., Gomes, Á., and Antunes, C. H. (2018). Opti mizing residential energy resources with an improved multi-objective genetic algorithm based on greedy mu tations. In Proceedings of the Genetic and Evolutionary 
  13. Computation Conference, pages 1246–1253. 
    ergy flows of a residential household using genetic pro gramming to perform symbolic regression. In Inter national Conference on Computer Aided Systems Theory, pages 405–412. Springer. 
  14. Kefer, K., Hanghofer, R., Kefer, P., Stöger, M., Hofer, B., Affenzeller, M., and Winkler, S. Simulation-based opti mization of residential energy flows using genetic pro gramming to solve a symbolic regression problem. in preparation for submission to the Journal of Energy and Buildings. 
  15. Kommenda, M., Kronberger, G., Affenzeller, M., Winkler, S. M., and Burlacu, B. (2016). Evolving simple symbolic regression models by multi-objective genetic program ming. In Genetic Programming Theory and Practice XIII, pages 18–129. Springer. 
  16. Kothare, M. V., Balakrishnan, V., and Morari, M. (1996). Robust constrained model predictive control using lin ear matrix inequalities. Automatica, 32(10):1361–1379. 
  17. Morganti, G., Perdon, A., Conte, G., Scaradozzi, D., and Brintrup, A. (2009). Optimising home automation sys tems: A comparative study on tabu search and evolu tionary algorithms. In 2009 17th Mediterranean Confer ence on Control and Automation, pages 1044–1049. IEEE. 
  18. Pedrasa, M. A. A., Spooner, T. D., and MacGill, I. F. (2010). Coordinated scheduling of residential distributed en ergy resources to optimize smart home energy services. IEEE Transactions on Smart Grid, 1(2):134–143. 
  19. Pflugradt, N. (2016). Modellierung von Wasser und Energie verbräuchen in Haushalten. PhD thesis. 
  20. Salpakari, J. and Lund, P. (2016). Optimal and rule-based control strategies for energy flexibility in buildings with pv. Applied Energy, 161:425–436. 
  21. Seal, S., Boulet, B., and Dehkordi, V. R. (2020). Cen tralized model predictive control strategy for thermal comfort and residential energy management. Energy, 212:118456. 
  22. Sisodiya, S., Kumbhar, G. B., and Alam, M. N. (2018). A home energy management incorporating energy stor age systems with utility under demand response using pso. In 2018 IEEMA Engineer Infinite Conference (eTech NxT), pages 1–6. 
  23. Srinivas, M. and Patnaik, L. M. (1994). Genetic algorithms: A survey. computer, 27(6):17–26. 
  24. Wagner, S. (2005). Sexualga: Gender-specific selection for genetic algorithms. 
  25. Wagner, S., Beham, A., Kronberger, G., Kommenda, M., Pitzer, E., Kofler, M., Vonolfen, S., Winkler, S., Dorfer, V., and Affenzeller, M. (2010). Heuristiclab 3.3: A unified approach to metaheuristic optimization. In Actas del sép timo congreso español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB’2010), page 8.