
9th International Workshop on Simulation for Energy, Sustainable Development & Environment
18th International Multidisciplinary Modeling & Simulation Multiconference

ISSN 2724-0061 ISBN 978-88-85741-67-6 © 2021 The Authors.
doi: 10.46354/i3m.2021.sesde.007

© 2021 The Authors. This article is an open access article distributed under the terms and conditions of the
Creative Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Optimization of Complex Thermally Electrically
Coupled Buildings using Genetic Programming to
Identify Optimal Energy Flow Controllers
Kathrin Kefer1,*, Patrick Kefer2, Roland Hanghofer4, Markus Stöger1, Bernd
Hofer1, Michael A�enzeller3 and Stephan Winkler3
1Fronius International GmbH, Günter-Fronius-Straße1, Thalheim, A-4600, Austria
2Research & Development FH OÖ Forschungs und Entwicklungs GmbH: Research Group ASIC, Ringstraße 43a,
Wels, A-4600, Austria
3Research & Development FH OÖ Forschungs und Entwicklungs GmbH: Research Group Heuristic and
Evolutionary Algorithms Laboratory, Softwarepark 11, Hagenberg, A-4232, Austria
4Dynatrace Austria GmbH, Softwarepark 32, Hagenberg, A-4232, Austria
*Corresponding author. Email address: kefer.kathrin-maria@fronius.com

Abstract

During the last years, renewable energy sources and their management have become increasingly important to help driving
forward the energy transition and slow down the global warming. Current energy management systems are either simple but
not optimal or very complex, computationally intensive and optimal. Despite that, they also often focus on the optimization of
just the electrical energy �ows of buildings so far. This work focuses on the development of a linear model predictive controller
as well as heuristic energy �ow controllers for optimizing a complex thermally-electrically coupled system. For that, a real
world building is modelled in MATLAB Simulink and used for the training process of the heuristic controllers as well as for the
evaluation of the di�erent optimizers in simulation with di�erent timespans. It is found that the linear MPC works better than
a rule-based self consumption optimization and that the heuristic controllers work signi�cantly better than these two for all
evaluation timespans up to 180 days, while they perform signi�cantly worse for 364 days.
Keywords: Energy Management System; Genetic Programming; Symbolic Regression

1. Introduction

In order to drive forward the energy transition and slowdown the global warming, renewable energy sourcesand their management have become increasingly im-portant during the last years. As these renewable en-ergy sources are subject to constantly changing environ-mental conditions, they cannot produce a continuously

stable amount of energy, which results in faster andbigger �uctuations in the low voltage grid. Especiallywhen there is a lot of, e.g. photovoltaic (PV) productionduring a sunny day resulting in a big amount of feed-inenergy or high consumption peaks during cloudy orrainy days with only little PV production, the grid oper-ating reserves need to take a lot of e�ort to compensatethis and keep the grid stable. At the moment, this
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still works quite well, however it will become increas-ingly di�cult with the increasing number of renewableenergy sources built and installed.
This is why energy management systems (EMS),which should use, store and distribute the self-produced renewable energy as e�ciently as possiblemainly in order to minimize the building’s energy costs,also become more and more important. However, cur-rently such EMS are either runtime e�cient and easyto use but not optimal, like simple rule-based energymanagement systems. Or they are not real-time capa-ble due to being computationally very intensive whileproviding at least almost optimal results, like modelpredictive controls. Despite that, they also often fo-cus on the optimization and management of just theelectrical part of buildings so far. Therefore, the aimof this work is to develop a computationally e�cientand near-optimal energy management system for acomplex thermally-electrically coupled system. Thissystem is modelled in MATLAB Simulink and includesa PV power plant, a hydroelectric power plant, a bat-tery storage, a heat pump, a Fronius Ohmpilot whichturns electricity into hot water and an oil heating asprimary heating source. The main contributions arethe following:

1. Development of a complex thermally-electricallycoupled simulation model using a real world buildingas basis.2. Learning the optimal structure and behaviour ofheuristic energy management controllers using an ex-isting optimization approach, historical system dataand genetic programming.3. Developing a linear model predictive controller asreference optimizer to the heuristic controllers.4. Optimizing the thermal and electrical energy �owsof the system and therefore minimizing its energycosts in simulation using the two presented optimiza-tion approaches and one existing EMS.5. Detailed analysis of the di�erent energy �ow con-trollers in simulation for their ability to minimize thesystem’s energy costs for di�erent evaluation times-pans.
The remaining work is structured as follows: Chap-ter 2 gives an overview of existing EMS technologies,followed by a detailed description of the developedmethodology, the used data basis and evaluation pro-cedure in chapter 3. Finally, chapters 4 and 5 describethe evaluation results and the conclusions drawn fromthem.

2. State of the art
Currently, three main trends can be identi�ed for theoptimization of residential energy �ows: Rule-basedcontrol systems, model predictive controls and alsometa-heuristic optimization algorithms as they are

used in this work. All approaches are brie�y explainedbelow.
2.1. Rule-based Energy Management Systems

Rule-based energy management systems are one of thesimplest to optimize energy �ows. Experts de�ne rulesthat should manage the system and represent them assimple either-or decisions, which form a tree struc-ture in the program �ow. In these trees, the branchesrepresent the decisions according to the de�ned ruleswhile the leaf nodes de�ne the actions that the systemshould perform in the respective state. Rule-based EMSare fast and easy to develop for simple systems andalso achieve good optimization results for them. How-ever, optimizing complex systems with this approachrequires a lot of expert knowledge and developmente�ort and is prone to unexpected and unwanted side ef-fects. Nevertheless, due to the simple tree structure theexecution of such EMS, which is basically just runningthrough the tree from top to bottom, is very perfor-mant and can control also larger systems in realtime.Examples for rule-based energy management systemswere developed by De Coninck et al. in 2014 (De Con-inck et al., 2014), Salpakari and Lund in 2016 (Salpakariand Lund, 2016) and Alimohammadisagvand et al. in2018 (Alimohammadisagvand et al., 2018). One rule-based EMS that is already sold to customers is the Fro-nius self consumption optimization (GmbH, a), whichis also used as a reference EMS for this work. It is in-tegrated in the Fronius inverters and uses a zero-feedin strategy to self-consume as much of the producedenergy as possible instead of feeding it into the grid.As this work aims at optimizing a complex thermally-electrically coupled system, rule-based EMS are likelyto not work very well. Additionally, as soon as onepart of the system changes, the whole optimizationneeds to be adapted. With the approach proposed inthis work, only a retraining of the controllers is nec-essary. However, they are similarly fast during theexecution independently of the size and complexity ofthe system.
2.2. Model Predictive Controls for Energy Manage-

ment Systems

Another widely used but more complex technique forenergy management systems are model predictive con-trols (MPCs). They are linear or quadratic optimizationprograms that use accurate forecasts and an exact repre-sentation of the system to be optimized as a simulationmodel in order to calculate the optimal control inputsfor the next point in time at a given time. For thispurpose, the current system values and the simulationmodel are used to predict the future system behaviour.With that, the optimization algorithm calculates theactions for the next point in time (Kothare et al., 1996).Due to that, such controllers run almost optimally but
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not in realtime like the approach presented in this workas simulating the model to calculate the forecasts usu-ally takes quite some time. Additionally, MPCs use thesimulation model to calculate the forecasts whereasthis work uses the model for the training process of thecontrollers and not during their execution. MPC basedenergy management systems were developed by Chenet al. in 2012, who optimize the schedule of thermaland non-thermal appliances of residential buildingswith their MPC (Chen et al., 2013), in 2018 by Godinaet al. whose MPC optimizes and controls the air con-ditioning of a room within a house that also has a PVsystem as renewable energy source integrated (Godinaet al., 2018) and in 2020 by Seal, Boulet and Dehkordi,who implemented a centralized MPC for a zone basedcomfort and energy management in a residential build-ing with a PV system, a battery and a heat pump (Sealet al., 2020).
2.3. Meta-Heuristic Optimization Algorithms for

Energy Management Systems

Especially in recent years, there has also been a ten-dency to use meta-heuristic algorithms for control-ling energy �ows, mostly particle swarm optimizationapproaches (PSO) and genetic algorithms. For �nd-ing optimal solutions, PSO algorithms create a certainnumber of “particles” (solution candidates) which to-gether form a swarm that moves through the de�nedsolution space (Pedrasa et al., 2010). Examples of PSObased energy management systems were published byEseye et al. in 2016, who optimize an energy man-agement system for an isolated industrial microgridfor minimal energy costs and maximum economicalbene�t using a modi�ed particle swarm optimizationalgorithm (Eseye et al., 2016) and by Sisodiya, Kumbharand Alam in 2018, who presented a PSO algorithm thatschedules a building’s electric vehicle, electric waterheater, heating, ventilation and air conditioning underspeci�ed user requirements in order to minimize theelectricity bill (Sisodiya et al., 2018). In comparisonto the approach used in this work, Eseye et al. do nottrain the heuristic controllers in advance but use thePSO to create the optimal schedule directly during theexecution of the energy management system but, likethis work, also use a simulation model for that. Despitethat, their focus is on the optimization of an isolatedmicro grid system whereas this work focuses on theoptimization of residential buildings. Pedrasa et al. (Pe-drasa et al., 2010), however, use a more user-focusedapproach where they let the user decide on the priori-ties of the building’s appliances, which this work doesnot take into account.
Di�ering to the PSO algorithms, the genetic algo-rithms have the natural, biological selection processas paradigm. They generate new solution candidatesbased on a parent generation using crossover and ran-dom mutation. After a (quality) selection, a number

of these children solution candidates are transferredto the next generation. In this way, an optimal solu-tion can be approximated or even found in the courseof the generations (Srinivas and Patnaik, 1994). Oneexample of genetic algorithms that are used for the op-timization or management of energy sources and loadswere presented in 2009 by Morganti et al. (Morgantiet al., 2009), in 2013 by Arabali et al. (Arabali et al.,2012) and in 2018 by Gonçalves et al. (Gonçalves et al.,2018). Morganti et al. use an agent-based optimiza-tion problem representation where each appliance ismodelled as an agent in a system and optimize thissystem in simulation using single and multi-objectivegenetic algorithms (Morganti et al., 2009). In compar-ison to that, this work does not use an agent-basedproblem representation but a symbolic regression prob-lem and a physical simulation model that should beoptimized. Besides that, they also use the NSGA-IIas multi-objective algorithm but the classic single ob-jective GA instead of the O�spring Selection GeneticAlgorithm that is used in this work. Similar to thiswork, Arabali et al. use a genetic algorithm-based ap-proach to optimize a system with controllable heating,ventilation and air conditioning loads which are sup-plied by a hybrid-renewable generation and energystorage system. Di�erent to this approach, they usehistorical data to stochastically model the load, PV sys-tem and wind production. Despite that, they also donot use a simulation model for the optimizations buta probabilistic modelling method of the energy pro-duction and loads (Arabali et al., 2012). Gonçalves etal. focus on the energy cost minimization of a resi-dential energy resource while considering a set of userde�ned comfort preferences. In order to optimize thesecon�icting objectives, they also use a further develop-ment of the well-known NSGA-II similar to this work.However, they do not use a symbolic regression basedproblem representation and a simulation model for theoptimization as done in this work (Gonçalves et al.,2018).

3. Method

In the course of this work, two di�erent simulation-based optimization approaches for a complex thermalelectrically coupled system were developed. The neededdetailed simulation model for that is explained togetherwith the parameters that are optimized inmore detail insection 3.1. The developed genetic programming basedoptimization approach as well as the implemented lin-ear model predictive control, which serves also as acomparison reference for the evaluation of the heuristiccontrollers, are explained in more detail in sections 3.2and 3.3. These sections are followed by a detailed expla-nation of the data basis which is used for the trainingsof the heuristic controllers and the evaluation of thedi�erent optimization approaches in section 3.4 as well
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as by a description of the evaluation procedure itself insection 3.5.
3.1. Simulation Model

The basis for the evaluation model is a real-world build-ing in Upper Austria, which is modelled in MATLABSimulink to be able to simulate its electrical (Fig. 1)and thermal (Fig. 3) energy �ows. The electrical appli-ances built into the system and their energy �ows areshown in �gure 2 and include a hydroelectric powerplant, whose energy production is abstracted in themodel by adding it to the household load, a 1.5 kWpPV system, a 12kWh battery storage and an Ohmpilotdevice (GmbH, b), which turns electric power into hotwater using four heating rods. The inverter is modelledlinearly as shown in equation 1, where
• PPV is the power produced by the inverter,• PL is the household load plus the power produced bythe hydroelectric power plant,• PGrid is the power fed into or consumed from thegrid,• POhmpilot is the power consumed by the heating rodsvia the Ohmpilot,• PBat is the power discharged from the battery,• PtoBat is the power charged into the battery,• PtoDC is the power to the DC node,• PtoAC is the power to the AC node,• ηPV is the e�ciency of the inverter at the speci�cvoltage,• ηBat,DC is the e�ciency from the battery to the DCnode,• ηDC,Bat is the e�ciency from DC node to the battery,• ηDC,AC is the e�ciency from the DC node to the ACnode,• ηAC,DC is the e�ciency from the AC node to the DCnode.

PPV × ηPV + PBat × ηBat,DC – PtoBatηDC,Bat + PtoDC –
PtoAC
ηDC,AC = 0

PtoAC + PGrid – PL – PtoDCηAC,DC –
∑
POhmpilot = 0

(1)
Equation 2 shows the calculation of the battery’sstate of charge (SOC) for each simulation timestep t,where ∆T denotes the simulation interval, i.e. the dif-ference between two timesteps and Cap is the battery’scapacity.
SOC(t + 1) = SOC(t) + PtoBat(t) ∆TCap – PBat(t)

∆T
Cap (2)

The thermal part of the simulation model as shownin �gure 3 is modelled using the Carnot 2016b block-

set (Juelich, 2018) and consists of the building itself inform of a one-node simulation model together with itsspace heating, the oil heating and the the hot waterboiler. This hot water boiler can be heated up using theoil heating or four heating rods with a maximum power
Pmax of 9kW, which are controlled by the Ohmpilot. Asshown in equation 3, these four heating rods can becontrolled in di�erent ways: heating rod 1 (Pel,1) canonly be controlled using a variable amount of energy,heating rods 2 and 3 (Pel,2,3) can be controlled eitherusing a variable amount of energy or by turning themon/o� with the maximum possible 9kW and heatingrod 4 can only be switched on/o�. In the equation, idenotes the heating rod, yE,i is the activation variablefor the heating rods that can be switched on and o� and
yvar,i represents the activation variable for the heatingrods that can be controlled variably.

Pel,i ≤ Pmax
3∑
i=1
yVar,i ≤ 1

yE,i + yVar,i ≤ 1 where i = [2, 3]
Pel,Var,i ≤ Pmax × yVar,i where i = [1, 3]

(3)

As this setup in the real world building is quite spe-cial, there is an additional control program needed. Ituses the available amount of surplus power from the in-verter P_inv to switch as many heating rods on with thefull amount of power and then connects the Ohmpilotto one of the variable controllable heating rods Pel,1–3to supply this one with the remaining surplus power
PowerTarget. This logic is also shown in listing 1, where
P_HeatRod is an array that stores the amount of powerreserved for each heat rod and the EnableHeatRodsFixand EnableHeatRodsVar variables store the decisionswhich heating rods should be switched on with the full9kW or the variable power.
Listing 1. This algorithm is responsible for switchingon and o� the heating rods with their maximum powerand calculating the remaining power target for theOhmpilot which controls the remaining variable powerheating rod.
RodIdx = 1 ;
while P_inv > 0 && RodIdx < 5
i f HeatRodIdx == 1 && P_inv >= PmaxP_HeatRod(HeatRodIdx) = Pmax;
elseif HeatRodIdx ~= 1P_HeatRod(HeatRodIdx) = min(P_inv, Pmax) ;
endP_inv = P_inv – P_HeatRod(HeatRodIdx ) ;HeatRodIdx = HeatRodIdx + 1 ;

endEnableHeatRodsFix = (P_HeatRod(1 :3) == Pmax) ;EnableHeatRodsVar (1 :2) = (P_HeatRod(2:3)
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Figure 1. The electrical part of the simulation model with the inverter, the battery and the Ohmpilot. The controller for the inverter gets theenergy tari�s, the household load, the production from the PV system and the state of charge of the battery as input parameters to calculate therespective set point. For calculating the Ohmpilot set point, the respective controller uses the currently and remaining available power from theinverter and the energy consumed or fed into the grid at the previous time step. Using the Ohmpilot, the heating rods then heat up the hot waterboiler of the system as shown in the thermal part of the system in Figure 3.

Figure 2. The electrical energy �ows of the system between the PVsystem, the battery, the DC and AC nodes, the household load togetherwith the hydroelectric power plant production, the Ohmpilot and theenergy grid.

< Pmax) & (P_HeatRod(2:3) > 0);EnableHeatRodsVar(3) = P_HeatRod(4) > 0;
i f any(P_HeatRod>0)PowerTarget = min(P_HeatRod(P_HeatRod>0));
elsePowerTarget = 0;
end

The input values of the model are the energy tari�sfor consumption and feed-in, the household load withthe hydroelectric power plant energy production added,the energy production and voltage of the PV systemand weather data. They are also used by HeuristicLabto optimize three parameters of the model:
• the grid feed-in set point of the inverter using the
Inverter Controller block,• the energy available for heating up the hot waterboiler using the heating rods and the Ohmpilot using

the Ohmpilot Controller and• the enabling or disabling of the return �ow mixerusing the Return Flow Mixer Controller.
The Inverter Controller uses the two energy tari�s, thehousehold load with the hydroelectric power plant pro-duction included, the PV system production and thecurrent state of charge of the battery to calculate theoptimal amount of grid feed-in energy for the inverter(Fig. 1). The still available energy from the inverter isthen used together with the amount of energy fed intothe grid at the previous simulation step by the Ohmpilot
Controller to calculate the available power for the heat-ing rods (Fig. 1). Finally, the Return FlowMixer Controlleruses the current storage temperature to decide whetherto enable or disable the mixer for the hot water boiler(Fig. 3).
The result of the simulation are the total energy costsfor the system and simulated timespan. They are calcu-lated as shown in equation 4 where N denotes the totalnumber of simulation steps and t is the current simula-tion step. There, the amount of energy consumed fromand fed into the grid from the Power_to_grid signal inFig. 1 is multiplied with the respective energy tari�sand added to the energy costs caused by the oil heatingusing the MoneyFlowOilHeating signal in �gure 3. Thisis then summed up for all simulation steps to get thetotal energy costs.

coststotal =
N∑
t=1
PfromGrid(t)× costsconsumption(t)–

PtoGrid(t)× costsfeedin(t) + costsbackup
(4)
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Figure 3. The thermal part of the simulation model gets the power for the heating rods from the Ohmpilot as shown in Figure 1. They heatup the hot water boiler according to that. Despite that, also the oil heating is started by the oil heating control if the boiler temperature dropsbelow a certain threshold. The water from the hot water boiler is then used for the hot water supply in the building and by the space heatingcontrol, which decides whether the building needs to and can be heated up or not based on the room temperatures, the boiler temperatures andthe outside temperature. For simplicity reasons, this graphic of the model was slightly adapted from the original one, but the blocks and theconnections between them were kept the same.

3.2. Genetic Programming based Optimization Ap-
proach

For the genetic programming approach, a further devel-opment (Kefer et al.) of the model-based energy �owoptimization approach developed by Kefer et al. (Keferet al., 2019) is used. With that, the three parametersof a simulation model described in section 3.1 are op-timized to minimize the system’s energy costs. Thisis done using the optimization framework Heuristi-clab (Wagner et al., 2010) and MATLAB Simulink (mat,2020), where HeuristicLab starts the generation of C-code from the MATLAB Simulink model, adapts thegenerated code with additional functionality and thengenerates a DLL from that. In the controller training,this DLL is then used to evaluate the di�erent solu-tion candidates by receiving the controllers containedin the solution candidate as a formulas together withthe needed input values from HeuristicLab and thenbeing run for a speci�ed number of simulation steps.Once the simulation of the system is done, the energycosts of the system are read from the DLL by Heuristi-cLab and are used as the quality measurement, basedon which the next generation solution candidates areselected (Kefer et al.).

3.3. Linear Model Predictive Control

For the linear model predictive controller, it is chosento avoid mixed integer variables whenever possible astheir usage does neither guarantee convergence nor anoptimal result. In addition to that, the computationalcosts are signi�cantly higher than when using onlynormal linear programming. The optimization prob-lem for the MPC was de�ned using a problem basedformulation where the optimization matrix is createdby the algorithm. A prediction horizon of 24 hours andan optimization interval of 15 minutes are chosen. For

that, the thermal storage, the backup oil heating, aswell as the building model needed to be modelled in alinear way so that the algorithm can handle their opti-mization. The storage is modelled as four node �nitevolume model as there are four heating rods included inthe real world system and therefore also the developedsimulation model. Using the mathematical formulationof equation 5 for every of these four nodes, the modelof the thermal storage is obtained by the optimizationalgorithm.

mn.cp,�uid.Tn = ṁin.cp,�uid.(Tin – Tn)+
ṁdown.cp,�uid.(Tn+1 – Tn) + ṁup.cp,�uid.(Tn–1 – Tn)+

λ

dh
.(Tn+1 – Tn) + λ

dh
.(Tn–1 – Tn) + UA.(Tn – Ta,stor) + Q̇ext

(5)
As the heating power of the boiler cannot be con-trolled by an external control signal, the behaviour ofthe backup control had to approximately formulatedin the optimization algorithm, which resulted in theadditional set of equations and constraints shown inequation 6. Despite that, further assumptions like con-stant mass �ow of the backup heating, constant mass�ow in the storage and non-existing inverse thermo-cline are required to get the linear representation ofthe system.

Q̇Bck ≤ yBckQ̇Bck
Q̇Bck ≤ 0
Q̇Bck ≤ ṁBck.cp,�uid.(Tset,Bck – T3)

(6)

The building model for the linear optimization ap-proach was modelled using a 3R2C approach (equa-tion 7) similar to the representation in the simula-
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tion model. The radiator is modelled with a constantheat transfer coe�cient while all the external heatsources are considered as inputs to the linear optimiza-tion model and the mass �ow of the heating system isconsidered to be constant.
caphouse Ṫhouse = Q̇house – uA,Heat

(
Thouse – Tm,heat

)
capheat Ṫm,heat = uA,Heat

(
Thouse – Tm,heat

)+
cp,f ṁheat

(
Ti,heat – Tm,heat

)
(7)

The whole thermal model with the building and stor-age models included can be written as state space sys-tem as shown in equation 8, which represents a seriesof constraints for the optimization problem.



T1,k+1
T2,k+1
T3,k+1
T4,k+1
Thouse,k+1
Tm,heat,k+1


= Ak



T1,k
T2,k
T3,k
T4,k
Thouse,k
Tm,heat,k


+ Bk



Pel1,k
Pel2,k
Pel3,k
Pel4,kQ̇bck,kQ̇h,ext,k
Tamb,k


(8)

Due to the thermal mass of the system, the forwardtemperature and the storage temperature also have tobe set as soft constraints as shown in equation 9 toguarantee the convergence of the optimization problem.

Thouse ≥ Thouse,set – εhouse,LB
T4 ≥ Tstorage,set – εstorage

(9)

Slightly di�erent to the cost function used in the sim-ulation model, equation 10 also includes wstorage and
whouse as weighing vectors for the errors and εi whichare chosen to get su�ciently small deviations from thecalculated set points while a�ecting the cost functionas little as possible.

coststotal,MPC = PtoGrid × costsconsumption–
PfromGrid × costsfeedin + εhouse.whouse + εstorage.wstorage

(10)

3.4. Data Basis

For the controller training and evaluation, arti�ciallygenerated data that is based on measured real worlddata is used. It is generated for one year starting atthe �rst of January and covers all input values neededfor the simulation model: the variable energy tari�sfor consumption and feed-in, the household load, theproduction of the hydroelectric power plant, the PV sys-

tem production and voltage and the respective weatherdata. All methods used to calculate these values areexplained below in more detail and plots from the dataare shown in �gure 4.
3.4.1. PV production and Voltage data
The generated PV production data is based on a MAT-LAB Simulink simulation model which is parametrizedwith the exact PV plant parameters from the buildingand recorded Meteonorm weather data from 2018 forten di�erent locations in the vicinity of the real worldbuilding. For the arti�cial PV production data, two ofthose weather datasets are randomly selected and av-eraged. If the new dataset length is up to one year,the averaged weather data is shortened to the desireddataset length. If it is longer than 365 days, the selec-tion and averaging of the weather data is done untilthe desired length is reached. This arti�cially gener-ated weather data �le is then used as input for the PVsimulation model, which then generates the desired PVproduction and voltage data.
3.4.2. Hydroelectric Power Plant Production
For generating the arti�cial hydroelectric power plantdata, measured data from another power plant a fewkilometres upstream of the original one is used, includ-ing the energy production and energy loss. This datawas recorded from 2010 until 2015 and gets split upinto single days of data, which are grouped by theirmonth of measurement. By randomly selecting singledays from the respective months that the new datasetshould contain, subtracting the loss data from the pro-duction data and �nally appending this days to oneafter another, the new dataset is built up.
3.4.3. Household load
The household load of the real building is approximatedusing the program LoadPro�leGenerator (LPG) (P�u-gradt, 2016), in which the building was modelled asprecisely as possible so that the annual energy con-sumption is approximately the same. For that, alsoinput data like the weather data and the production ofthe hydroelectric power plant were included. Runningthe LoadPro�leGenerator then geneartes realistic loadcurves of the speci�ed building for di�erent start datesand lengths.
3.4.4. Variable Energy Tari�s
As basis for the arti�cially generated variable energytari�s, aWATTar (aWATTar) data from 2015 until 2018is used, including the energy consumption and feed-intari�s. The data gets split up month-wise and collectedin monthly pools, fromwhich then randomly a monthlydataset is selected and appended to the previous onesuntil the desired length of the new dataset is reached.
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Figure 4. Visualizations of the arti�cially generated data basis for the energy tari�s for the whole year (left), the load including the hydroelectricpower plant production for the 2nd of January (middle) and the PV production data for the 2nd of January (right).

3.5. Evaluation

In order to evaluate the heuristic energy �ow con-trollers, the �rst day of the arti�cially generated databasis as explained in chapter 3.4 and two di�erent ge-netic algorithms are used to each train �ve controllers,resulting in a total of ten heuristic controllers. The�rst algorithm is the single-objective O�spring Se-lection Genetic Algorithm (OSGA) from A�enzeller etal. (A�enzeller and Wagner, 2005), which just mini-mizes the energy costs of the building. As parameters,maximum 100 generations and 250 000 evaluated so-lutions, a mutation probability of 30%, a maximumselection pressure of 100, a population size of 500 with1000 selected parents and a GenderSpeci�c Selector (Wag-ner, 2005) with a ProportionalSelector as female and a
RandomSelector as male selector are used.
The second genetic algorithm that is used to trainthe heuristic controllers is an adaptation by Kommendaet al. (Kommenda et al., 2016) of the multi-objectiveNon-Dominated Sorting Genetic Algorithm (NSGA-II)originally developed by Deb et al. (Deb et al., 2002),which not only tries to minimize the energy costs ofthe system but at the same time also the complexity ofthe controllers, i.e. the symbolic regression trees con-tained in the solution candidates. (Kommenda et al.,2016) Similar to the parameters used for the OSGA,for the NSGA-II a maximum of 100 generations with acrossover probability of 100%, a mutation probability of30% and a population of 500 solution candidates with1000 selected parents is used. As selector, a Crowd-

edTournamentSelector (Deb, 2001) with a group size ofsix is used. Despite that, for the symbolic regressiontrees a maximum tree depth of 50 and a maximum treelength of 100 is speci�ed, together with the followingmathematical operators as grammar: the four arith-metic functions addition, subtraction, multiplicationand division, the trigonometric functions sine, cosineand tangent, exponential and logarithm operators andthe power functions square, power, square root androot.
For the evaluation of all energy �ow optimizers, thedescribed simulation model is used with a simulationinterval of one second and an initial state of charge of

the battery of 30%, which is also used for the trainingof the heuristic controllers. Each controller is simulatedwith this model for 30, 60, 180 and 364 days, startingat the day after the training on the 2nd of January. Theresult of the simulation, the energy costs of the system,is then used for the comparison of the three energy�ow controllers: the heuristic controllers, the also pre-viously described linear model predictive controller andthe rule-based Fronius self consumption optimization(SCO).

4. Results and Discussion

As shown in table 1, the model predictive controllerachieves better results than the Fronius self consump-tion optimization for all four evaluation timespans onaverage by 6.91% for 30, 60 and 180 days of simulationand by 0.51% for 364 days of simulation. Compar-ing the heuristic controllers to the SCO, it is shownthat all of them also work highly signi�cantly (averagep=0.0000042) better for all evaluation timespans upto 180 days. When comparing them to the MPC, theheuristic controllers achieve signi�cantly better resultsfor 30 (p = 0.00094) and 180 (p = 0.0032) days of eval-uation, while they achieve signi�cantly worse resultsfor 60 (p = 0.59) days of evaluation.
Taking a closer look on the heuristic controllerstrained with the NSGA-II algorithm, it turns out thatthey perform worse than the ones trained with theOSGA algorithm. Comparing them to the SCO for 30,60 and 180 evaluation days, the OSGA-trained heuristiccontrollers always achieve statistically signi�cant bet-ter results with an average p-value of 0.00012, whilethe NSGA-II trained controllers there have an aver-age p-value of 0.093. Comparing them to the MPC,this performance di�erence becomes even more ob-vious. The NSGA-II trained controllers achieve aver-age energy costs of 1525.86€ (SD: 93.95€) for 30 days,while the OSGA trained controllers cause on average1491.72€ (SD:23.68€) energy costs. This makes theOSGA controllers perform signi�cantly better than theMPC with a p-value of 0.00035 while for the NSGA-IIcontrollers no statistical signi�cance could be proven
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Simulation Days

Optimizer 30 60 180 364

SCO 1731.47 3382.71 6042.25 10248.33
MPC 1611.06 3147.38 5630.04 10195.95

NSGA-II 1 1471.49 3064.20 5239.43 11007.37
NSGA-II 2 1483.02 3142.76 5218.01 10801.48
NSGA-II 3 1489.11 3106.76 5328.83 11199.21
NSGA-II 4 1492.35 3109.56 5311.22 11212.22
NSGA-II 5 1693.32 3349.01 5939.66 10338.72
OSGA 1 1472.10 3063.97 5229.18 10999.01
OSGA 2 1526.10 3174.58 5419.97 11337.61
OSGA 3 1486.86 3103.76 5297.82 11132.25
OSGA 4 1469.41 3057.86 5216.16 10966.10
OSGA 5 1504.13 3149.4 5379.84 11281.45

Table 1. The energy costs in € for 30, 60, 180 and 364 days of simu-lation for the two reference optimization algorithms and the �ve con-trollers trained with each of the two genetic algorithms.

Figure 5. The energy costs for all evaluated energy �ow controllersfor the timespan between 180 and 364 evaluation days. The powerconsumed from the grid is here shown as negative values while thepower fed into the grid is shown as the positive values.

with a p-value of 0.11. The same e�ect holds for 180days of evaluation, where the NSGA-II trained con-trollers achieve average energy costs of 5407.43€ (SD:301.17€), which are not statistically signi�cant (p =0.17) better than the MPC, while the OSGA trained con-trollers achieve signi�cantly (p = 0.0013) better averageenergy costs of 5308.59€ (SD: 90.07€). For all evalu-ation timespans up to 180 days, the energy �ow con-troller #4 trained with the OSGA achieves the overallbest results.
However, for 364 days of evaluation, all heuristiccontrollers perform signi�cantly worse than both refer-ence optimization algorithms, which means that thereis a turnover point somewhere between 180 and 364simulation days. As shown in �gure 5, this happensafter approximately 11 000 000 seconds of simulation(calculated from 180 simulation days as starting point),which refers to approximately the beginning of Novem-ber in the dataset. When analysing the behaviour of thedi�erent controllers in detail in order to �nd reasonsfor this turnover, it is found that their behaviour mainlydi�ers in the usage of the heating rods. As shown in �g-

(a) MPC (b) SCO

(c) NSGA-II controller #5. (d) OSGA controller #4.
Figure 6. The behaviour and in�uence of the di�erent energy �owcontrollers on the heat rod power and the energy consumption fromand feed-in to the grid.

ure 6, the model predictive controller barely activatesthe heating rods at the beginning and mainly in the sec-ond half of the timespan while the SCO enables one ofthe heating rods with 9kW already in the �rst half. Forthese activations, the MPC uses power from the grid inaddition to the one from the PV system, while the SCOsupplies the heating rods mainly through the PV systemwhile only consuming the energy needed to supply thehousehold loads from the grid. In comparison to thatare the heuristic controllers mainly using the grid tosupply the activated heating rods and they also activateat least one of them right from the beginning of theshown timespan. This behaviour is most likely causedby the very short training time of just one day for theheuristic controllers, which is de�nitely not capable ofcovering all possible system states. Therefore, thesecontrollers also slightly lack in their generalizabilityand ability to well handle evaluation timespans thatdi�er from the training data.

5. Conclusions

This paper presents an approach for optimizing com-plex thermal electrically coupled buildings using ge-netic programming to train heuristic energy �ow con-trollers with the goal to minimize its energy costs. Forthat, the building is modelled in MATLAB Simulink asprecisely as possible and then used for the training pro-cess of the heuristic controllers. Using two di�erentgenetic algorithms, in total ten heuristic controllersare trained with arti�cially generated data of one dayand evaluated for their energy cost optimization ability.As reference energy management systems, an existingrule-based self consumption optimization as well asa linear model predictive controller, which was alsodeveloped in the course of this work, are used andcompared to the heuristic energy �ow controllers. Allenergy management systems are evaluated in simula-
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tion with the same model which is also used for theheuristic controller training using arti�cially generateddata for one year. The evaluated timespans start afterthe one day training data for the heuristic controllerson the 2nd of January and include 30, 60, 180 and 364days of simulation
It is found that the linear MPC works better than therule-based self consumption optimization for all eval-uation timespans by saving up to 7.47% of the energycosts. The heuristic controllers work signi�cantly bet-ter than both reference energy management systemsfor all evaluation timespans up to 180 days and canthere save up to 8.79% of the costs compared to thelinear MPC, while they perform signi�cantly worse for364 days and cause up to 10.08% more energy costscompared to the SCO. This turnover between 180 and364 evaluation days is caused by the di�erent usage ofthe heating rods, which are activated more often espe-cially with the full 36 kW by the heuristic controllersand which are mainly supplied by energy consumedfrom the grid. In comparison to that, the MPC and theSCO use the heating rods less, do not activate all ofthem at once and try to supply them from the energyproduced by the PV system as good as possible.
However, the very short training time of just oneday of data needs to be taken into account here. Re-lated works with a simpler system to be optimizedhave proved that longer training times for the heuristiccontrollers can bring big improvements. This is dueto the bigger data variety included in longer datasetsand because of that also a better generalization andoptimization ability of the trained controllers. There-fore, in future work the heuristic controllers should betrained with additional datasets with di�erent lengthsso that this assumption can also be proved for thiscomplex, thermal electrically coupled system. Despitethat, a di�erent data basis with measured instead ofarti�cially generated data would be favourable to betterapproximate the behaviour of the real world buildingand to eliminate possible errors and wrong assump-tions in the arti�cially generated data. Despite theselimitations, it would also be interesting to test the ap-proach with bigger simulations, for example includingmultiple buildings that should be optimized together.For that, more than three system parameters need tobe optimized, which increases the complexity of theoptimization problem remarkably. It is expected thatthe heuristic controllers then will perform better thanthe reference energy management systems, as they aremuch more �exible and do not need a linearisation ofthe problem like e.g. the model predictive controllerdoes.
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