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Abstract

During the last years, renewable energy sources and their management have become increasingly important to help driving
forward the energy transition and slow down the global warming. Current energy management systems are either simple but
not optimal or very complex, computationally intensive and optimal. Despite that, they also often focus on the optimization of
just the electrical energy flows of buildings so far. This work focuses on the development of a linear model predictive controller
as well as heuristic energy flow controllers for optimizing a complex thermally-electrically coupled system. For that, a real
world building is modelled in MATLAB Simulink and used for the training process of the heuristic controllers as well as for the
evaluation of the different optimizers in simulation with different timespans. It is found that the linear MPC works better than
a rule-based self consumption optimization and that the heuristic controllers work significantly better than these two for all
evaluation timespans up to 180 days, while they perform significantly worse for 364 days.

Keywords: Energy Management System; Genetic Programming; Symbolic Regression

1. Introduction

In order to drive forward the energy transition and slow
down the global warming, renewable energy sources
and their management have become increasingly im-
portant during the last years. As these renewable en-
ergy sources are subject to constantly changing environ-
mental conditions, they cannot produce a continuously

stable amount of energy, which results in faster and
bigger fluctuations in the low voltage grid. Especially
when there is a lot of, e.g. photovoltaic (PV) production
during a sunny day resulting in a big amount of feed-in
energy or high consumption peaks during cloudy or
rainy days with only little PV production, the grid oper-
ating reserves need to take a lot of effort to compensate
this and keep the grid stable. At the moment, this
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still works quite well, however it will become increas-
ingly difficult with the increasing number of renewable
energy sources built and installed.

This is why energy management systems (EMS),
which should use, store and distribute the self-
produced renewable energy as efficiently as possible
mainly in order to minimize the building’s energy costs,
also become more and more important. However, cur-
rently such EMS are either runtime efficient and easy
to use but not optimal, like simple rule-based energy
management systems. Or they are not real-time capa-
ble due to being computationally very intensive while
providing at least almost optimal results, like model
predictive controls. Despite that, they also often fo-
cus on the optimization and management of just the
electrical part of buildings so far. Therefore, the aim
of this work is to develop a computationally efficient
and near-optimal energy management system for a
complex thermally-electrically coupled system. This
system is modelled in MATLAB Simulink and includes
a PV power plant, a hydroelectric power plant, a bat-
tery storage, a heat pump, a Fronius Ohmpilot which
turns electricity into hot water and an oil heating as
primary heating source. The main contributions are
the following:

1. Development of a complex thermally-electrically
coupled simulation model using a real world building
as basis.

2. Learning the optimal structure and behaviour of
heuristic energy management controllers using an ex-
isting optimization approach, historical system data
and genetic programming.

3. Developing a linear model predictive controller as
reference optimizer to the heuristic controllers.

4. Optimizing the thermal and electrical energy flows
of the system and therefore minimizing its energy
costs in simulation using the two presented optimiza-
tion approaches and one existing EMS.

5. Detailed analysis of the different energy flow con-
trollers in simulation for their ability to minimize the
system’s energy costs for different evaluation times-
pans.

The remaining work is structured as follows: Chap-
ter 2 gives an overview of existing EMS technologies,
followed by a detailed description of the developed
methodology, the used data basis and evaluation pro-
cedure in chapter 3. Finally, chapters 4 and 5 describe
the evaluation results and the conclusions drawn from
them.

2. State of the art

Currently, three main trends can be identified for the
optimization of residential energy flows: Rule-based
control systems, model predictive controls and also
meta-heuristic optimization algorithms as they are

used in this work. All approaches are briefly explained
below.

2.1. Rule-based Energy Management Systems

Rule-based energy management systems are one of the
simplest to optimize energy flows. Experts define rules
that should manage the system and represent them as
simple either-or decisions, which form a tree struc-
ture in the program flow. In these trees, the branches
represent the decisions according to the defined rules
while the leaf nodes define the actions that the system
should perform in the respective state. Rule-based EMS
are fast and easy to develop for simple systems and
also achieve good optimization results for them. How-
ever, optimizing complex systems with this approach
requires a lot of expert knowledge and development
effort and is prone to unexpected and unwanted side ef-
fects. Nevertheless, due to the simple tree structure the
execution of such EMS, which is basically just running
through the tree from top to bottom, is very perfor-
mant and can control also larger systems in realtime.
Examples for rule-based energy management systems
were developed by De Coninck et al. in 2014 (De Con-
inck et al., 2014), Salpakari and Lund in 2016 (Salpakari
and Lund, 2016) and Alimohammadisagvand et al. in
2018 (Alimohammadisagvand et al., 2018). One rule-
based EMS that is already sold to customers is the Fro-
nius self consumption optimization (GmbH, a), which
is also used as a reference EMS for this work. It is in-
tegrated in the Fronius inverters and uses a zero-feed
in strategy to self-consume as much of the produced
energy as possible instead of feeding it into the grid.
As this work aims at optimizing a complex thermally-
electrically coupled system, rule-based EMS are likely
to not work very well. Additionally, as soon as one
part of the system changes, the whole optimization
needs to be adapted. With the approach proposed in
this work, only a retraining of the controllers is nec-
essary. However, they are similarly fast during the
execution independently of the size and complexity of
the system.

2.2. Model Predictive Controls for Energy Manage-
ment Systems

Another widely used but more complex technique for
energy management systems are model predictive con-
trols (MPCs). They are linear or quadratic optimization
programs that use accurate forecasts and an exact repre-
sentation of the system to be optimized as a simulation
model in order to calculate the optimal control inputs
for the next point in time at a given time. For this
purpose, the current system values and the simulation
model are used to predict the future system behaviour.
With that, the optimization algorithm calculates the
actions for the next point in time (Kothare et al., 1996).
Due to that, such controllers run almost optimally but



not in realtime like the approach presented in this work
as simulating the model to calculate the forecasts usu-
ally takes quite some time. Additionally, MPCs use the
simulation model to calculate the forecasts whereas
this work uses the model for the training process of the
controllers and not during their execution. MPC based
energy management systems were developed by Chen
et al. in 2012, who optimize the schedule of thermal
and non-thermal appliances of residential buildings
with their MPC (Chen et al., 2013), in 2018 by Godina
et al. whose MPC optimizes and controls the air con-
ditioning of a room within a house that also has a PV
system as renewable energy source integrated (Godina
et al., 2018) and in 2020 by Seal, Boulet and Dehkordi,
who implemented a centralized MPC for a zone based
comfort and energy management in a residential build-
ing with a PV system, a battery and a heat pump (Seal
et al., 2020).

2.3. Meta-Heuristic Optimization Algorithms for
Energy Management Systems

Especially in recent years, there has also been a ten-
dency to use meta-heuristic algorithms for control-
ling energy flows, mostly particle swarm optimization
approaches (PSO) and genetic algorithms. For find-
ing optimal solutions, PSO algorithms create a certain
number of “particles” (solution candidates) which to-
gether form a swarm that moves through the defined
solution space (Pedrasa et al., 2010). Examples of PSO
based energy management systems were published by
Eseye et al. in 2016, who optimize an energy man-
agement system for an isolated industrial microgrid
for minimal energy costs and maximum economical
benefit using a modified particle swarm optimization
algorithm (Eseye et al., 2016) and by Sisodiya, Kumbhar
and Alam in 2018, who presented a PSO algorithm that
schedules a building’s electric vehicle, electric water
heater, heating, ventilation and air conditioning under
specified user requirements in order to minimize the
electricity bill (Sisodiya et al., 2018). In comparison
to the approach used in this work, Eseye et al. do not
train the heuristic controllers in advance but use the
PSO to create the optimal schedule directly during the
execution of the energy management system but, like
this work, also use a simulation model for that. Despite
that, their focus is on the optimization of an isolated
micro grid system whereas this work focuses on the
optimization of residential buildings. Pedrasa et al. (Pe-
drasa et al., 2010), however, use a more user-focused
approach where they let the user decide on the priori-
ties of the building’s appliances, which this work does
not take into account.

Differing to the PSO algorithms, the genetic algo-
rithms have the natural, biological selection process
as paradigm. They generate new solution candidates
based on a parent generation using crossover and ran-
dom mutation. After a (quality) selection, a number
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of these children solution candidates are transferred
to the next generation. In this way, an optimal solu-
tion can be approximated or even found in the course
of the generations (Srinivas and Patnaik, 1994). One
example of genetic algorithms that are used for the op-
timization or management of energy sources and loads
were presented in 2009 by Morganti et al. (Morganti
et al., 2009), in 2013 by Arabali et al. (Arabali et al.,
2012) and in 2018 by Gongalves et al. (Gongalves et al.,
2018). Morganti et al. use an agent-based optimiza-
tion problem representation where each appliance is
modelled as an agent in a system and optimize this
system in simulation using single and multi-objective
genetic algorithms (Morganti et al., 2009). In compar-
ison to that, this work does not use an agent-based
problem representation but a symbolic regression prob-
lem and a physical simulation model that should be
optimized. Besides that, they also use the NSGA-II
as multi-objective algorithm but the classic single ob-
jective GA instead of the Offspring Selection Genetic
Algorithm that is used in this work. Similar to this
work, Arabali et al. use a genetic algorithm-based ap-
proach to optimize a system with controllable heating,
ventilation and air conditioning loads which are sup-
plied by a hybrid-renewable generation and energy
storage system. Different to this approach, they use
historical data to stochastically model the load, PV sys-
tem and wind production. Despite that, they also do
not use a simulation model for the optimizations but
a probabilistic modelling method of the energy pro-
duction and loads (Arabali et al., 2012). Gongalves et
al. focus on the energy cost minimization of a resi-
dential energy resource while considering a set of user
defined comfort preferences. In order to optimize these
conflicting objectives, they also use a further develop-
ment of the well-known NSGA-II similar to this work.
However, they do not use a symbolic regression based
problem representation and a simulation model for the
optimization as done in this work (Gongalves et al.,
2018).

3. Method

In the course of this work, two different simulation-
based optimization approaches for a complex thermal
electrically coupled system were developed. The needed
detailed simulation model for that is explained together
with the parameters that are optimized in more detail in
section 3.1. The developed genetic programming based
optimization approach as well as the implemented lin-
ear model predictive control, which serves also as a
comparison reference for the evaluation of the heuristic
controllers, are explained in more detail in sections 3.2
and 3.3. These sections are followed by a detailed expla-
nation of the data basis which is used for the trainings
of the heuristic controllers and the evaluation of the
different optimization approaches in section 3.4 as well
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as by a description of the evaluation procedure itself in
section 3.5.

3.1. Simulation Model

The basis for the evaluation model is a real-world build-
ing in Upper Austria, which is modelled in MATLAB
Simulink to be able to simulate its electrical (Fig. 1)
and thermal (Fig. 3) energy flows. The electrical appli-
ances built into the system and their energy flows are
shown in figure 2 and include a hydroelectric power
plant, whose energy production is abstracted in the
model by adding it to the household load, a 1.5 kWp
PV system, a 12kWh battery storage and an Ohmpilot
device (GmbH, b), which turns electric power into hot
water using four heating rods. The inverter is modelled
linearly as shown in equation 1, where

« Ppy is the power produced by the inverter,

« Py is the household load plus the power produced by
the hydroelectric power plant,

* Pgiq is the power fed into or consumed from the
grid,

* Ponmpilor 1S the power consumed by the heating rods
via tﬁe Ohmpilot,

+ Pp, is the power discharged from the battery,

* Pyypat is the power charged into the battery,

* Piopc is the power to the DC node,

* Pioac is the power to the AC node,

« npy is the efficiency of the inverter at the specific
voltage,

* npat,pc is the efficiency from the battery to the DC
node,

* Npc,par 18 the efficiency from DC node to the battery,

* npc,ac is the efficiency from the DC node to the AC
node,

* nac,pc is the efficiency from the AC node to the DC
node.

P toBat P toAC
Ppy x npy + Ppat X Npat,pc ~ +Pyppc—-—-==0
1DC,Bat 1pc,AC
P
Proac + Paria = P, — —12< = >~ Popmpitor = O
MAc,DC 2 P

(™

Equation 2 shows the calculation of the battery’s
state of charge (SOC) for each simulation timestep ¢,
where AT denotes the simulation interval, i.e. the dif-
ference between two timesteps and Cap is the battery’s
capacity.

ar
Cap

a1

SOC(t + 1) = SOC(t) + Propqr(t) Cap

= Ppy(t) (2)

The thermal part of the simulation model as shown
in figure 3 is modelled using the Carnot 2016b block-

set (Juelich, 2018) and consists of the building itself in
form of a one-node simulation model together with its
space heating, the oil heating and the the hot water
boiler. This hot water boiler can be heated up using the
oil heating or four heating rods with a maximum power
Pmax of 9kW, which are controlled by the Ohmpilot. As
shown in equation 3, these four heating rods can be
controlled in different ways: heating rod 1 (P, ;) can
only be controlled using a variable amount of energy,
heating rods 2 and 3 (P, ;) can be controlled either
using a variable amount of energy or by turning them
on/off with the maximum possible 9kW and heating
rod 4 can only be switched on/off. In the equation, i
denotes the heating rod, yg ; is the activation variable
for the heating rods that can be switched on and off and
Yvar,i T€presents the activation variable for the heating
rods that can be controlled variably.

P, i < Pmax

3
Yar,i <1
% Var,i (3)

YVEi + Yvar,i < 1 where i = [2,3]

Pel,Var,i < Pmax X Yvar,i where i = [1’ 3]

As this setup in the real world building is quite spe-
cial, there is an additional control program needed. It
uses the available amount of surplus power from the in-
verter P_inv to switch as many heating rods on with the
full amount of power and then connects the Ohmpilot
to one of the variable controllable heating rods P, ;_;
to supply this one with the remaining surplus power
PowerTarget. This logic is also shown in listing 1, where
P_HeatRod is an array that stores the amount of power
reserved for each heat rod and the EnableHeatRodsFix
and EnableHeatRodsVar variables store the decisions
which heating rods should be switched on with the full
9kW or the variable power.

Listing 1. This algorithm is responsible for switching
on and off the heating rods with their maximum power
and calculating the remaining power target for the
Ohmpilot which controls the remaining variable power
heating rod.

RodIdx = 1;
while P_inv > 0 && Rodldx < 5
if HeatRodIdx == 1 && P_inv >= Pmax
P_HeatRod(HeatRodIdx) = Pmax;
elseif HeatRodIdx ~= 1
P_HeatRod(HeatRodIdx) = min(P_inv, Pmax);
end
P_inv = P_inv - P_HeatRod(HeatRodIdx);
HeatRodIdx = HeatRodIdx + 1;
end
EnableHeatRodsFix = (P_HeatRod(1:3) == Pmax);
EnableHeatRodsVar(1:2) = (P_HeatRod(2:3)
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Figure 1. The electrical part of the simulation model with the inverter, the battery and the Ohmpilot. The controller for the inverter gets the
energy tariffs, the household load, the production from the PV system and the state of charge of the battery as input parameters to calculate the
respective set point. For calculating the Ohmpilot set point, the respective controller uses the currently and remaining available power from the
inverter and the energy consumed or fed into the grid at the previous time step. Using the Ohmpilot, the heating rods then heat up the hot water
boiler of the system as shown in the thermal part of the system in Figure 3.
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Figure 2. The electrical energy flows of the system between the PV
system, the battery, the DC and AC nodes, the household load together
with the hydroelectric power plant production, the Ohmpilot and the
energy grid.

< Pmax) & (P_HeatRod(2:3) > 0);
EnableHeatRodsVar(3) = P_HeatRod(4) > 0;
if any(P_HeatRod>0)
PowerTarget = min(P_HeatRod(P_HeatRod>0));
else
PowerTarget = 0;
end

The input values of the model are the energy tariffs
for consumption and feed-in, the household load with
the hydroelectric power plant energy production added,
the energy production and voltage of the PV system
and weather data. They are also used by HeuristicLab
to optimize three parameters of the model:

- the grid feed-in set point of the inverter using the
Inverter Controller block,

- the energy available for heating up the hot water
boiler using the heating rods and the Ohmpilot using

the Ohmpilot Controller and
- the enabling or disabling of the return flow mixer
using the Return Flow Mixer Controller.

The Inverter Controller uses the two energy tariffs, the
household load with the hydroelectric power plant pro-
duction included, the PV system production and the
current state of charge of the battery to calculate the
optimal amount of grid feed-in energy for the inverter
(Fig. 1). The still available energy from the inverter is
then used together with the amount of energy fed into
the grid at the previous simulation step by the Ohmpilot
Controller to calculate the available power for the heat-
ing rods (Fig. 1). Finally, the Return Flow Mixer Controller
uses the current storage temperature to decide whether
to enable or disable the mixer for the hot water boiler
(Fig. 3).

The result of the simulation are the total energy costs
for the system and simulated timespan. They are calcu-
lated as shown in equation 4 where N denotes the total
number of simulation steps and t is the current simula-
tion step. There, the amount of energy consumed from
and fed into the grid from the Power_to_grid signal in
Fig. 1 is multiplied with the respective energy tariffs
and added to the energy costs caused by the oil heating
using the MoneyFlowOilHeating signal in figure 3. This
is then summed up for all simulation steps to get the
total energy costs.

N

COStStotql = Z pfromGrid(t) X COStSconsumption(t)_ (%)
t=1

Progrig(t) x COStSfeedin(t) + COStSpackup
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Figure 3. The thermal part of the simulation model gets the power for the heating rods from the Ohmpilot as shown in Figure 1. They heat
up the hot water boiler according to that. Despite that, also the oil heating is started by the oil heating control if the boiler temperature drops
below a certain threshold. The water from the hot water boiler is then used for the hot water supply in the building and by the space heating
control, which decides whether the building needs to and can be heated up or not based on the room temperatures, the boiler temperatures and
the outside temperature. For simplicity reasons, this graphic of the model was slightly adapted from the original one, but the blocks and the

connections between them were kept the same.

3.2. Genetic Programming based Optimization Ap-
proach

For the genetic programming approach, a further devel-
opment (Kefer et al.) of the model-based energy flow
optimization approach developed by Kefer et al. (Kefer
et al., 2019) is used. With that, the three parameters
of a simulation model described in section 3.1 are op-
timized to minimize the system’s energy costs. This
is done using the optimization framework Heuristi-
clab (Wagner et al., 2010) and MATLAB Simulink (mat,
2020), where HeuristicLab starts the generation of C-
code from the MATLAB Simulink model, adapts the
generated code with additional functionality and then
generates a DLL from that. In the controller training,
this DLL is then used to evaluate the different solu-
tion candidates by receiving the controllers contained
in the solution candidate as a formulas together with
the needed input values from HeuristicLab and then
being run for a specified number of simulation steps.
Once the simulation of the system is done, the energy
costs of the system are read from the DLL by Heuristi-
cLab and are used as the quality measurement, based
on which the next generation solution candidates are
selected (Kefer et al.).

3.3. Linear Model Predictive Control

For the linear model predictive controller, it is chosen
to avoid mixed integer variables whenever possible as
their usage does neither guarantee convergence nor an
optimal result. In addition to that, the computational
costs are significantly higher than when using only
normal linear programming. The optimization prob-
lem for the MPC was defined using a problem based
formulation where the optimization matrix is created
by the algorithm. A prediction horizon of 24 hours and
an optimization interval of 15 minutes are chosen. For

that, the thermal storage, the backup oil heating, as
well as the building model needed to be modelled in a
linear way so that the algorithm can handle their opti-
mization. The storage is modelled as four node finite
volume model as there are four heating rods included in
the real world system and therefore also the developed
simulation model. Using the mathematical formulation
of equation 5 for every of these four nodes, the model
of the thermal storage is obtained by the optimization
algorithm.

mn.Cp’ﬂuid.Tn = min.Cp’ﬂuid.(Tin - Tn)+

mdown.cp’ﬂuid.(Tn...l - Tn) + rhup.Cleuid.(Tn_l - Tn)+
A A :
?-(Tn+1 - Tn) + T'(Tn_l = Tn) + Upy.(Tn - Ta,stor) + Qext
h h
(5)

As the heating power of the boiler cannot be con-
trolled by an external control signal, the behaviour of
the backup control had to approximately formulated
in the optimization algorithm, which resulted in the
additional set of equations and constraints shown in
equation 6. Despite that, further assumptions like con-
stant mass flow of the backup heating, constant mass
flow in the storage and non-existing inverse thermo-
cline are required to get the linear representation of
the system.

QBck < VBck QBck
QBck <0 (6)

QBck < chk-Cp,ﬂuid-(Tset,Bck - T3)
The building model for the linear optimization ap-

proach was modelled using a 3R2C approach (equa-
tion 7) similar to the representation in the simula-



tion model. The radiator is modelled with a constant
heat transfer coefficient while all the external heat
sources are considered as inputs to the linear optimiza-
tion model and the mass flow of the heating system is
considered to be constant.

CAPhouse Thouse = Chouse ~ UA Heat (Thouse - Tm,heat)
CaPheat Tm heat = UA,Heat (Thouse - Tm,heat) +

p.f Mheat (Tf,heat - Tm,heat)

(7)

The whole thermal model with the building and stor-
age models included can be written as state space sys-
tem as shown in equation 8, which represents a series
of constraints for the optimization problem.

p el1,k
Ty k1 Tk p..
T T el2,k
2,k+1 2,k P
T3 k41 T3k ek
T3, = Ak T ’ + Bk Pellhk
4,k+1 4ok Q
T, T <bck,k
house,k+1 house,k o}
Tm,heat,k+1 Tm,heat,k Th,ext,k
amb,k
(8)

Due to the thermal mass of the system, the forward
temperature and the storage temperature also have to
be set as soft constraints as shown in equation 9 to
guarantee the convergence of the optimization problem.

Thouse 2 Thouse,set ~ €house,LB (9)
T4 > Tstorage,set — €storage

Slightly different to the cost function used in the sim-
ulation model, equation 10 also includes Wstorage and
Whouse @S Weighing vectors for the errors and ¢; which
are chosen to get sufficiently small deviations from the
calculated set points while affecting the cost function
as little as possible.

COStStotal,MPC = ptoGn’d X COStSconsumption_

PfromGrid X COStSfeedin + €house-Whouse * Estorage-Wstorage

(10)

3.4. Data Basis

For the controller training and evaluation, artificially
generated data that is based on measured real world
data is used. It is generated for one year starting at
the first of January and covers all input values needed
for the simulation model: the variable energy tariffs
for consumption and feed-in, the household load, the
production of the hydroelectric power plant, the PV sys-
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tem production and voltage and the respective weather
data. All methods used to calculate these values are
explained below in more detail and plots from the data
are shown in figure 4.

3.4.1. PVproduction and Voltage data

The generated PV production data is based on a MAT-
LAB Simulink simulation model which is parametrized
with the exact PV plant parameters from the building
and recorded Meteonorm weather data from 2018 for
ten different locations in the vicinity of the real world
building. For the artificial PV production data, two of
those weather datasets are randomly selected and av-
eraged. If the new dataset length is up to one year,
the averaged weather data is shortened to the desired
dataset length. If it is longer than 365 days, the selec-
tion and averaging of the weather data is done until
the desired length is reached. This artificially gener-
ated weather data file is then used as input for the PV
simulation model, which then generates the desired PV
production and voltage data.

3.4.2. Hydroelectric Power Plant Production

For generating the artificial hydroelectric power plant
data, measured data from another power plant a few
kilometres upstream of the original one is used, includ-
ing the energy production and energy loss. This data
was recorded from 2010 until 2015 and gets split up
into single days of data, which are grouped by their
month of measurement. By randomly selecting single
days from the respective months that the new dataset
should contain, subtracting the loss data from the pro-
duction data and finally appending this days to one
after another, the new dataset is built up.

3.4.3. Household load

The household load of the real building is approximated
using the program LoadProfileGenerator (LPG) (Pflu-
gradt, 2016), in which the building was modelled as
precisely as possible so that the annual energy con-
sumption is approximately the same. For that, also
input data like the weather data and the production of
the hydroelectric power plant were included. Running
the LoadProfileGenerator then geneartes realistic load
curves of the specified building for different start dates
and lengths.

3.4.4. Variable Energy Tariffs

As basis for the artificially generated variable energy
tariffs, aWATTar (aWATTar) data from 2015 until 2018
is used, including the energy consumption and feed-in
tariffs. The data gets split up month-wise and collected
in monthly pools, from which then randomly a monthly
dataset is selected and appended to the previous ones
until the desired length of the new dataset is reached.
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Figure 4. Visualizations of the artificially generated data basis for the energy tariffs for the whole year (left), the load including the hydroelectric
power plant production for the 2nd of January (middle) and the PV production data for the 2nd of January (right).

3.5. Evaluation

In order to evaluate the heuristic energy flow con-
trollers, the first day of the artificially generated data
basis as explained in chapter 3.4 and two different ge-
netic algorithms are used to each train five controllers,
resulting in a total of ten heuristic controllers. The
first algorithm is the single-objective Offspring Se-
lection Genetic Algorithm (OSGA) from Affenzeller et
al. (Affenzeller and Wagner, 2005), which just mini-
mizes the energy costs of the building. As parameters,
maximum 100 generations and 250 000 evaluated so-
lutions, a mutation probability of 30%, a maximum
selection pressure of 100, a population size of 500 with
1000 selected parents and a GenderSpecific Selector (Wag-
ner, 2005) with a ProportionalSelector as female and a
RandomSelector as male selector are used.

The second genetic algorithm that is used to train
the heuristic controllers is an adaptation by Kommenda
et al. (Kommenda et al., 2016) of the multi-objective
Non-Dominated Sorting Genetic Algorithm (NSGA-II)
originally developed by Deb et al. (Deb et al., 2002),
which not only tries to minimize the energy costs of
the system but at the same time also the complexity of
the controllers, i.e. the symbolic regression trees con-
tained in the solution candidates. (Kommenda et al.,
2016) Similar to the parameters used for the OSGA,
for the NSGA-II a maximum of 100 generations with a
crossover probability of 100%, a mutation probability of
30% and a population of 500 solution candidates with
1000 selected parents is used. As selector, a Crowd-
edTournamentSelector (Deb, 2001) with a group size of
six is used. Despite that, for the symbolic regression
trees a maximum tree depth of 50 and a maximum tree
length of 100 is specified, together with the following
mathematical operators as grammar: the four arith-
metic functions addition, subtraction, multiplication
and division, the trigonometric functions sine, cosine
and tangent, exponential and logarithm operators and
the power functions square, power, square root and
root.

For the evaluation of all energy flow optimizers, the
described simulation model is used with a simulation
interval of one second and an initial state of charge of

the battery of 30%, which is also used for the training
of the heuristic controllers. Each controller is simulated
with this model for 30, 60, 180 and 364 days, starting
at the day after the training on the 2nd of January. The
result of the simulation, the energy costs of the system,
is then used for the comparison of the three energy
flow controllers: the heuristic controllers, the also pre-
viously described linear model predictive controller and
the rule-based Fronius self consumption optimization
(SCO).

4. Results and Discussion

As shown in table 1, the model predictive controller
achieves better results than the Fronius self consump-
tion optimization for all four evaluation timespans on
average by 6.91% for 30, 60 and 180 days of simulation
and by 0.51% for 364 days of simulation. Compar-
ing the heuristic controllers to the SCO, it is shown
that all of them also work highly significantly (average
P=0.0000042) better for all evaluation timespans up
to 180 days. When comparing them to the MPC, the
heuristic controllers achieve significantly better results
for 30 (p = 0.00094) and 180 (p = 0.0032) days of eval-
uation, while they achieve significantly worse results
for 60 (p = 0.59) days of evaluation.

Taking a closer look on the heuristic controllers
trained with the NSGA-II algorithm, it turns out that
they perform worse than the ones trained with the
OSGA algorithm. Comparing them to the SCO for 30,
60 and 180 evaluation days, the OSGA-trained heuristic
controllers always achieve statistically significant bet-
ter results with an average p-value of 0.00012, while
the NSGA-II trained controllers there have an aver-
age p-value of 0.093. Comparing them to the MPC,
this performance difference becomes even more ob-
vious. The NSGA-II trained controllers achieve aver-
age energy costs of 1525.86€ (SD: 93.95€) for 30 days,
while the OSGA trained controllers cause on average
1491.72€ (SD:23.68€) energy costs. This makes the
OSGA controllers perform significantly better than the
MPC with a p-value of 0.00035 while for the NSGA-II
controllers no statistical significance could be proven



Simulation Days

Optimizer 30 60 180 364
SCO 1731.47 3382.71  6042.25 10248.33
MPC 1611.06 3147.38 5630.04 10195.95

NSGA-II1  1471.49 3064.20 5239.43  11007.37

NSGA-II 2  1483.02  3142.76 5218.01  10801.48

NSGA-II 3 1489.11 3106.76 5328.83 11199.21

NSGA-II 4  1492.35 3109.56 5311.22 11212.22

NSGA-II 5 1693.32  3349.01 5939.66 10338.72

0SGA 1 1472.10 3063.97 5229.18  10999.01
OSGA 2 1526.10 3174.58 5419.97 11337.61
0SGA 3 1486.86  3103.76 5297.82 11132.25
OSGA 4 1469.41  3057.86 5216.16 10966.10
0SGA 5 1504.13 3149.4 5379.84  11281.45

Table 1. The energy costs in € for 30, 60, 180 and 364 days of simu-
lation for the two reference optimization algorithms and the five con-
trollers trained with each of the two genetic algorithms.
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Figure 5. The energy costs for all evaluated energy flow controllers
for the timespan between 180 and 364 evaluation days. The power
consumed from the grid is here shown as negative values while the
power fed into the grid is shown as the positive values.

with a p-value of 0.11. The same effect holds for 180
days of evaluation, where the NSGA-II trained con-
trollers achieve average energy costs of 5407.43€ (SD:
301.17€), which are not statistically significant (p =
0.17) better than the MPC, while the OSGA trained con-
trollers achieve significantly (p = 0.0013) better average
energy costs of 5308.59€ (SD: 90.07€). For all evalu-
ation timespans up to 180 days, the energy flow con-
troller #4 trained with the OSGA achieves the overall
best results.

However, for 364 days of evaluation, all heuristic
controllers perform significantly worse than both refer-
ence optimization algorithms, which means that there
is a turnover point somewhere between 180 and 364
simulation days. As shown in figure 5, this happens
after approximately 11 000 000 seconds of simulation
(calculated from 180 simulation days as starting point),
which refers to approximately the beginning of Novem-
ber in the dataset. When analysing the behaviour of the
different controllers in detail in order to find reasons
for this turnover, it is found that their behaviour mainly
differs in the usage of the heating rods. As shown in fig-
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Figure 6. The behaviour and influence of the different energy flow
controllers on the heat rod power and the energy consumption from
and feed-in to the grid.

ure 6, the model predictive controller barely activates
the heating rods at the beginning and mainly in the sec-
ond half of the timespan while the SCO enables one of
the heating rods with 9kW already in the first half. For
these activations, the MPC uses power from the grid in
addition to the one from the PV system, while the SCO
supplies the heating rods mainly through the PV system
while only consuming the energy needed to supply the
household loads from the grid. In comparison to that
are the heuristic controllers mainly using the grid to
supply the activated heating rods and they also activate
at least one of them right from the beginning of the
shown timespan. This behaviour is most likely caused
by the very short training time of just one day for the
heuristic controllers, which is definitely not capable of
covering all possible system states. Therefore, these
controllers also slightly lack in their generalizability
and ability to well handle evaluation timespans that
differ from the training data.

5. Conclusions

This paper presents an approach for optimizing com-
plex thermal electrically coupled buildings using ge-
netic programming to train heuristic energy flow con-
trollers with the goal to minimize its energy costs. For
that, the building is modelled in MATLAB Simulink as
precisely as possible and then used for the training pro-
cess of the heuristic controllers. Using two different
genetic algorithms, in total ten heuristic controllers
are trained with artificially generated data of one day
and evaluated for their energy cost optimization ability.
As reference energy management systems, an existing
rule-based self consumption optimization as well as
a linear model predictive controller, which was also
developed in the course of this work, are used and
compared to the heuristic energy flow controllers. All
energy management systems are evaluated in simula-
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tion with the same model which is also used for the
heuristic controller training using artificially generated
data for one year. The evaluated timespans start after
the one day training data for the heuristic controllers
on the 2nd of January and include 30, 60, 180 and 364
days of simulation

It is found that the linear MPC works better than the
rule-based self consumption optimization for all eval-
uation timespans by saving up to 7.47% of the energy
costs. The heuristic controllers work significantly bet-
ter than both reference energy management systems
for all evaluation timespans up to 180 days and can
there save up to 8.79% of the costs compared to the
linear MPC, while they perform significantly worse for
364 days and cause up to 10.08% more energy costs
compared to the SCO. This turnover between 180 and
364 evaluation days is caused by the different usage of
the heating rods, which are activated more often espe-
cially with the full 36 kW by the heuristic controllers
and which are mainly supplied by energy consumed
from the grid. In comparison to that, the MPC and the
SCO use the heating rods less, do not activate all of
them at once and try to supply them from the energy
produced by the PV system as good as possible.

However, the very short training time of just one
day of data needs to be taken into account here. Re-
lated works with a simpler system to be optimized
have proved that longer training times for the heuristic
controllers can bring big improvements. This is due
to the bigger data variety included in longer datasets
and because of that also a better generalization and
optimization ability of the trained controllers. There-
fore, in future work the heuristic controllers should be
trained with additional datasets with different lengths
so that this assumption can also be proved for this
complex, thermal electrically coupled system. Despite
that, a different data basis with measured instead of
artificially generated data would be favourable to better
approximate the behaviour of the real world building
and to eliminate possible errors and wrong assump-
tions in the artificially generated data. Despite these
limitations, it would also be interesting to test the ap-
proach with bigger simulations, for example including
multiple buildings that should be optimized together.
For that, more than three system parameters need to
be optimized, which increases the complexity of the
optimization problem remarkably. It is expected that
the heuristic controllers then will perform better than
the reference energy management systems, as they are
much more flexible and do not need a linearisation of
the problem like e.g. the model predictive controller
does.
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