Improving Efficiency and Safety for Heat Exchangers and Water Piping by innovative Solutions

  • Agostino G. Bruzzone 
  • Emanuele Magi,
  • Antonio Giovanetti, 
  • Bharath Gadupuri
  • a,c Simulation Team, via Magliotto, 17100, Savona, Italy
  • DCCI, Simulation Team, via Trento 34, 16145, Genova, Italy
  • University of Genova, , via Opera Pia 15, 16145, Genova, Italy
Cite as
Bruzzone A.G., Magi E., Giovanetti A., Gadupuri B. (2021). Improving Efficiency and Safety for Heat Exchangers and Water Piping by innovative Solutions. Proceedings of the 9th International Workshop on Simulation for Energy, Sustainable Development & Environment (SESDE 2021), pp. 80-84. DOI: https://doi.org/10.46354/i3m.2021.sesde.011

Abstract

The purpose of the following Research Project is to improve the efficiency and safety of heat exchangers and pipes inside industrial plants thanks to the removal of limescale and biofilm. The automatic system is designed to keep pipes clean by dosing a mixture of inert gases of food purity. This solution is intended to be used to solubilize and avoid the formation of limestone deposits and concretions, as well as biofilm, inside pipes and accessories of hydraulic circuits with particular attention to the Industrial Plant

References

  1. Andritsos, N., Karabelas, A. J., & Koutsoukos, P. G. (1997). Morphology and structure of CaCO3 scale layers formed under isothermal flow conditions. Langmuir, 13(10), 2873-2879

  2. Andristos, N., Kabarelas, A.J., (2003) Calcium carbonate scaling in a plate heat exchanger in the presence of particles, Int. J. Heat Mass Transf. 46 4613–4627.

  3. Boxall, J. B., & Saul, A. J. (2005). Modeling discoloration in potable water distribution systems. Journal of Environmental Engineering, 131(5), 716-725 
  4. Bruzzone, A. G., Massei, M., Reverberi, A., Cardelli, M., di Matteo, R., & Maglione, G. L. (2017). Simulation of Power Plant Environmental Impacts within the Extended Marine Framework. Chemical Engineering Transactions, 61, 1261-1266. 
  5. Bruzzone, A. G., Massei, M., Solis, A. O., Poggi, S., Bartolucci, C., & Capponi, L. D. A. (2013, July). Serious games as enablers for training and education on operations on ships and off-shore platforms. In Proceedings of the 2013 summer computer simulation conference (pp. 1-8). 
  6. Bruzzone A.G., Gronalt M., Merkuryev Y., Piera M.A. (2012) “Harbor Maritime and Multimodal Logistics”, Vienna, ISBN 978-88-97999-11-9 
  7. Characklis, W.G., (1990), Biofilms, Wiley, New York p.195 
  8. De Baat Doelman, J. (2001). Controlling scale deposition and industrial fouling. WATER Engineering & Management, 148(7), 19-21. 
  9. Eguìa, E., Trueba, A., Rìo-Calonge, B., Gìron, A., Bielva, C., (2008), Biofilm control in tubular heat exchangers refrigerated by seawater using flow inversion physical treatment 
  10. Flemming, H.,C., (2002), Biofouling in water systems- cases, causes and conuntermeaseures 
  11. Flemming, H. C. (1997). Reverse osmosis membrane biofouling. Experimental thermal and fluid science, 14(4), 382-391. 
  12. Krauter P.W, Harrar J.E., Orloff S.P. (1998) "Effect of C02-Air Mixtures on the pH of Air- Stripped Water at Treatment Facility D", Technical Report, Lawrence Livermore National Laboratory, CA, January 
  13. Knudsen, J.G. (1981), Cooling Water fouling-a brief review, fouling in heat Exchanger Equipment, pp 29-38 
  14. Liang, Z. H. A. N. G., Long-she, S. H. E. N., QI-fu, X. J. P. M., & Xiang-guang, L. I. U. (2011). Analysis on Pipe Explosion of Boiler Caused by Scaling. Contemporary Chemical Industry, 01. 
  15. Mattila-Sandholm, T. & Wirtanen, G., (1992), Biofilm formation in the industry: A review, Food Reviews International, 8:4, pp.573-603
  16. Montgomery, J.M. (1985) "Water Treatment Principles and Design", John Wiley, NYC 
  17. Montgomery, D. C. (2017). Design and analysis of experiments. John Wiley & Sons. NYC 
  18. Muryanto, S., Bayuseno, A. P., Ma’Mun, H., & Usamah, M. (2014). Calcium carbonate scale formation in pipes: effect of flow rates, temperature, and malic acid as additives on the mass and morphology of the scale. Procedia Chemistry, 9, 69-76. 
  19. Peng C., ANabaraone B.U, Crawshaw A.J., Maitland G.C., Trusier J.P.M. (2016) "Kinetics of carbonate mineral dissolution in CO2-acidified brines at storage reservoir conditions", Faraday Discussions, Carbon Capture and Storage, 192, 545 
  20. Shahid M.K., Pyo M., Choi Y.G. (2018) "The operation of reverse osmosis system with CO2 as a scale inhibitor: A study on operational behavior and membrane morphology", Desalination, 426, 11-20, Elsevier 
  21. Shahid M.K. (2017) "Carbonate scale reduction in reverse osmosis membrane by CO2 in wastewater reclamation", Membrane Water Treatment, 8 (2), March, 125-136 
  22. Yin, W., Wang, Y., Liu, L., (2019), Biofilms: The Microbial “Protective Clothing” in Extreme Environments