The supply chain as a complex adaptive system: hybridsimulation modelling

  • Alejandro Nila Luevano,
  • Aida Huerta Barrientos 
  • a,b   Faculty of Engineering & Centro de Ciencias de la Complejidad,Ciudad Universitaria,Mexico City,04510,México
Cite as
Alejandro Nila Luevano and Aida Huerta Manuel I. (2022).,The supply chain as a complex adaptive system: hybrid simulation modelling. Proceedings of the 34th European Modeling & Simulation Symposium (EMSS 2022). , 004 . DOI: https://doi.org/10.46354/i3m.2022.emss.004

Abstract

Complex adaptive systems(CAS)are constituted by large number of components called agents,wichlearn, adapt and interact.Supply chain has beenconceptualized, modelled and simulatedas CAS by many authors.Despite the existing studies onsimulation of supply chain asCASthe present study aims to fill a gap,because it proposes a hybrid simulation model of supplychain as CAS (Discrete-Event Simulation and Agent-Based Modelling and Simulation) using AnylogicTMsoftware to analyze themicro mechanisms that influence on the service time measured at macro level. Although previous researchers conductedsimulation studies into the supply chain asCAS,they all focused on applying agent-based simulation approachonly.First,theliterature review on modelling and simulation of supply chain as CAS is developed.Second, ahybrid simulation model of supplychain as CAS (Discrete-Event Simulation and Agent-Based Modelling and Simulation) is implemented using AnylogicTMsoftwareand presented.Third, the simulation results are analyzed in Section 4.Finally, the concluding remarks are drawnin Section 5.Results gave us the opportunity to observe and measure impact of limited capacityoffacilitiesand its dynamics depending ondemand flows.

References

  1. Auyang, S. (1999). Foundations of complex-system.Theories in economics, evolutionary biology, andstatistical physics. Cambridge: CambridgeUniversity Press.
  2. Brandenburg,M., Govindan, K., Sarkis, J., Seuring, S.(2014). Quantitative models for sustainable chainmanagement: developments and directions. European Journal of Operational Research, 233: 299–312.
  3. Buckley, W.(1968).Society as Complex AdaptiveSystem,in W. Buckley (Ed.),Modern SystemsResearch for the behavioral Scientist, Chicago, IL:Publishing Company.
  4. Choi, T.,Dooley, K.,Rungtusanatha, M. (2001).Supplynetworks and complex adaptive systems: Controlversus emergence.Journal of OperationsManagement, 19:351-366.
  5. Dobson, K. G. (2004). “Complexity science willtransform logistics. United States Naval Institute”.Proceedings, Annapolis Tomo 130 (4), 74-76.
  6. Eldabi,T.,Tako,A.,Bell,D.,Tolk, A., (2019).Tutorial onmeans of hybrid simulation. Proceedings of the 2019Winter Simulation Conference. December 2019, pp.33-43.
  7. Gell-Mann, M.(1994).Complex adaptive systems,inCowan, G. A., Pines, D., Meltzer, D. (eds.)Complexity:Metaphors, Models and Reality, 17-45. Addison-Wesley, Mexico.
  8. Haghnevis, M. and Askin, R.G. /2012). “A ModelingFramework for Engineered Complex AdaptiveSystems”. IEEE Systems Journal.DOI:10.1109/JSYST.2012.2190696
  9. Holland, J. H.(2006)Studying complex adaptivesystems.Jrl Syst Sci & Complexity, 19: 1–8.
  10. Huerta-Barrientos, A.and Flores de la Mota,I.(2017).Modeling the adoption of sustainable practices inthe supply chain: a game theory approach.Journal ofAdvanced Management Science, 5 (4): 250-254.
  11. Ivanov, D., Sokolov, B. (2010). “Adaptative SupplyChain Management”.London: Springer-Verlag.
  12. Lara-Rosano,F. (2016).Las Cienciasde la Complejidaden la solución de nuestros problemas sociales.Sistemas, Cibernética e Informática, 13 (2): 43-50.
  13. Long, Q. (2015). “Three-dimensional-flow model ofagent-based computational experiment forcomplex supply network evolution”. ExpertSystems with Applications. http://dx.doi.org/10.1016/j.eswa.2014.10.036.
  14. Ma,A.,Zhou,A.,Ali,A.,Alain, N. (2021). An AgentBased Modelling Approach for Dynamic RiskModelling in Emergency Response.2021 IEEEInternational Conference on Emergency Scienceand Information Technology (ICESIT) EmergencyScience and Information Technology (ICESIT), 2021IEEE International Conference on, pp.290-293.DOI:10.1109/ICESIT53460.2021.9696775
  15. Machi, L.A., McEvoy, B.T. (2009).The literature review.Corwin Press, California.
  16. Nair, A. & Vidal, J. M. (2011). “Supply network topologyand robustness against disruptions–aninvestigation using multi-agent model”.International Journalof Production Research. 49,1391-1404.
  17. Nilsson, F., Darley, V. (2006). “On complex adaptivesystems and agent-based modelling for improvingdecision-making in manufacturing and logisticssettings Experiences from a packaging company”.International Journal of Operations &ProductionManagement, 26, 1351-1373.
  18. Reyes Levalle, R., Nof, S. Y. (2017).Resilience in supplynetworks: Definition, dimensions, and levels.Annual Reviews in Control, 43.doi:10.1016/j.arcontrol.2017.02.003
  19. Rosenblueth, A., Wiener, N., Bigelow, J.(1943).Behavior, Purpose and Teleology.Philosophy ofScience,10:18-24.
  20. Seuring,S. (2013). A review of modelling approaches forsustainable supply chain management.DecisionSuport Systems,54 : 1513–1520.
  21. Surana, A., Kumara, S., Greaves, M., Nandini Raghavan,U. (2005).“Supply-chain networks: a complexadaptive systems perspective”. InternationalJournal of Production Research. https://doi.org/10.1080/00207540500142274.
  22. Van Eck, N.J., & Waltman, L. (2010).“Software survey:
    VOSviewer, a computer program for bibliometricmapping”. Scientometrics, 84,2,523-538.
  23. Van Eck, N.J., & Waltman, L. (2014). Visualizingbibliometric networks. In Y. Ding, R. Rousseau, & D.Wolfram (Eds.),Measuring scholarly impact: Methodsand practice:285-320. Springer.
  24. Wojtusiak, J., Warden, T., Herzog, O.(2012). “Machinelearning in agent-based stochastic simulation:Inferential theory and evaluation in transportationlogistics”. Computers & Mathematics withApplications, 64, 3658–3665.
  25. Wycisk, C., McKelvey, B., Hülsmann, M. (2008). “Smartparts, supply networks as complex adaptivesystems: analysis and implications”. InternationalJournal of Physical Distribution & LogisticsManagement.https://doi.org/10.1108/09600030810861198.