Enhancing a Simulation-Based Allocator Software with Machine Learning and Genetic Algorithms for Improving the Gate Assignment Problem

  • Alejandro Murrieta-Mendoza ,
  • Roberto Salvador Félix Patrón ,
  • c Miguel Mújica Mota
  • a,b,c  Aviation Academy, Amsterdam University of Applied Sciences, Rhijnspoorplein 2, Amsterdam, 1091GC, The
    Netherlands
Cite as
Murrieta-Mendoza A., Felix Patron R.S., and Mujica Mota M. (2022).,Gate Assignment Problem Optimization Using a Simulator as a Model and Flight Delay Prediction. Proceedings of the 34th European Modeling & Simulation Symposium (EMSS 2022). , 009 . DOI: https://doi.org/10.46354/i3m.2022.emss.009

Abstract

Assigning gates to flights considering physical, operational, and temporal constraints is known as the Gate Assignment Problem. This article proposes the novelty of coupling a commercial stand and gate allocation software with an off-the-grid optimization algorithm. The software provides the assignment costs, verifies constraints and restrictions of an airport, and provides an initial allocation solution. The gate assignment problem was solved using a genetic algorithm. To improve the robustness of the allocation results, delays and early arrivals are predicted using a random forest regressor, a machine learning technique and in turn they are considered by the optimization algorithm. Weather data and schedules were obtained from Zurich International Airport. Results showed that the combination of the techniques result in more efficient and robust solutions with higher degree of applicability than the one possible with the sole use of them independently.

References

  1. Aktel, A., Yagmahan, B., Özcan, T., Yenisey, M. M., & Sansarcı, E. (2017). The comparison of the metaheuristic algorithms performances on airport gate assignment problem. Transportation Research Procedia, 22, 469-478.
    doi:https://doi.org/10.1016/j.trpro.2017.03.061
  2. Bagamanova, M., & Mota, M. M. (2020). A multiobjective optimization with a delay-aware
    component for airport stand allocation. Journal of Air Transport Management, 83, 101757. doi:https://doi.org/10.1016/j.jairtraman.2019. 101757
  3. Bagamanova, M., & Mujica Mota, M. (2020). Reducing airport environmental footprint using a disruption-aware stand assignment approach. Transportation Research Part D: Transport and Environment, 89, 102634. doi:https://doi.org/10.1016/j.trd.2020.102634
  4. Belcastro, L., Marozzo, F., Talia, D., & Trunfio, P. (2016). Using Scalable Data Mining for Predicting Flight Delays. ACM Trans. Intell. Syst. Technol., 8(1), Article 5. doi:10.1145/2888402
  5. Bi, J., Wu, Z., Wang, L., Xie, D., & Zhao, X. (2020). A Tabu Search-Based Algorithm for Airport Gate Assignment: A Case Study in Kunming, China. Journal of Advanced Transportation, 2020, 8835201. doi:10.1155/2020/8835201
  6. Bolat, A. (2001). Models and a genetic algorithm for static aircraft-gate assignment problem. Journal of the Operational Research Society,
    52(10), 1107-1120. doi:10.1057/palgrave.jors.2601190
  7. Cheng, C.-H., Ho, S. C., & Kwan, C.-L. (2012). The use of meta-heuristics for airport gate assignment. Expert Systems with Applications, 39(16), 12430-12437. doi:https://doi.org/10.1016/j.eswa.2012.04.071
  8. Daş, G. S. (2017). New Multi objective models for the gate assignment problem. Computers & Industrial Engineering, 109, 347-356. doi:https://doi.org/10.1016/j.cie.2017.04.042
  9. Daş, G. S., Gzara, F., & Stützle, T. (2020). A review on airport gate assignment problems: Single versus multi objective approaches. Omega, 92, 102146. doi:https://doi.org/10.1016/j.omega.2019.102146
  10. Delahaye, D., Alliot, J., Schoenauer, M., & Farges, J. (1995). Genetic Algorithms for Automatic Regrouping of Air Traffic Control Sectors. Paper presented at the Evolutionary Programming.
  11. FAA. (2020). Cost of Delay Estimates 2019 (APO-100). Retrieved from https://www.faa.gov/data_research/aviation _data_statistics/media/cost_delay_estimates.pdf
  12. Gu, Y., & Chung, C. A. (1999). Genetic Algorithm Approach to Aircraft Gate Reassignment Problem. Journal of Transportation Engineering, 125(5), 384-389. doi:doi:10.1061/(ASCE)0733-947X(1999)125:5(384)
  13. Gui, G., Liu, F., Sun, J., Yang, J., Zhou, Z., & Zhao, D. (2020). Flight Delay Prediction Based on Aviation Big Data and Machine Learning. IEEE Transactions on Vehicular Technology, 69(1), 140-150. doi:10.1109/TVT.2019.2954094
  14. Guo, Z., Yu, B., Hao, M., Wang, W., Jiang, Y., & Zong, F. (2021). A novel hybrid method for flight departure delay prediction using Random Forest Regression and Maximal Information Coefficient. Aerospace Science and Technology, 116, 106822. doi:https://doi.org/10.1016/j.ast.2021.106822
  15. Hu, X.-B., & Di Paolo, E. (2009). An efficient genetic algorithm with uniform crossover for air traffic control. Computers & Operations Research, 36(1), 245-259. doi:https://doi.org/10.1016/j.cor.2007.09.005
  16. Jiefeng, X., & Bailey, G. (2001, 6-6 Jan. 2001). The airport gate assignment problem: mathematical model and a tabu search algorithm. Paper presented at the Proceedings of the 34th Annual Hawaii International Conference on System Sciences.
  17. Kim, S. H., Feron, E., & Clarke, J.-P. (2013). Gate Assignment to Minimize Passenger Transit Time and Aircraft Taxi Time. Journal of Guidance, Control, and Dynamics, 36(2), 467- 475. doi:10.2514/1.57022
  18. Marinelli, M., Dell’Orco, M., & Sassanelli, D. (2015). A Metaheuristic Approach to Solve the Flight Gate Assignment Problem. Transportation Research Procedia, 5, 211-220. doi:https://doi.org/10.1016/j.trpro.2015.01.013
  19. Murrieta-Mendoza, A., Botez, R. M., & Félix Patrón, R. S. (2015). Flight Altitude Optimization Using Genetic Algorithms Considering Climb and Descent Costs in Cruise with Flight Plan Information. SAE 2015 AeroTech Congress & Exhibition, 9. doi:https://doi.org/10.4271/2015-01-2542.
  20. Patrón, R. S. F., & Botez, R. M. (2015). Flight Trajectory Optimization Through Genetic Algorithms for Lateral and Vertical Integrated Navigation. Journal of Aerospace Information Systems, 12(8), 533-544. doi:10.2514/1.I010348
  21. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res., 12(null), 2825–2830
  22. Qu, J., Zhao, T., Ye, M., Li, J., & Liu, C. (2020). Flight Delay Prediction Using Deep Convolutional Neural Network Based on Fusion of Meteorological Data. Neural Processing Letters, 52(2), 1461-1484. doi:10.1007/s11063-020- 10318-4
  23. Rebollo, J. J., & Balakrishnan, H. (2014). Characterization and prediction of air traffic delays. Transportation Research Part C: Emerging Technologies, 44, 231-241. doi:https://doi.org/10.1016/j.trc.2014.04.007
  24. Truong, D. (2021). Using causal machine learning for predicting the risk of flight delays in air transportation. Journal of Air Transport Management, 91, 101993. doi:https://doi.org/10.1016/j.jairtraman.2020. 101993
  25. Wang, L. I., Zhu, Q.-L., & Xu, X.-F. (2014). Optimised assignment of airport gate configurations using an immune genetic algorithm. Mathematical Structures in Computer Science, 24(5), e240517. doi:10.1017/S0960129513000765
  26. Yu, B., Guo, Z., Asian, S., Wang, H., & Chen, G. (2019). Flight delay prediction for commercial air transport: A deep learning approach. Transportation Research Part E: Logistics and Transportation Review, 125, 203-221. doi:https://doi.org/10.1016/j.tre.2019.03.013
  27. Yu, C. H., & Lau, H. Y. K. (2014). A Hybrid Algorithm for Solving Gate Assignment Problem with Robustness and Tow Considerations, Cham.
  28. Zhao, H., & Cheng, L. (2014). Ant Colony Algorithm and Simulation for Robust Airport Gate Assignment. Mathematical Problems in Engineering, 2014, 804310. doi:10.1155/2014/804310
  29. Zoutendijk, M., & Mitici, M. (2021). Probabilistic Flight Delay Predictions Using Machine Learning and Applications to the Flight-toGate Assignment Problem. Aerospace, 8(6),
    152. Retrieved from https://www.mdpi.com/2226-4310/8/6/152