Modelling of the rinsing of a Fixed Bed Reactor for Solid Phase Peptide Synthesis using COMSOL Multiphysics®

  • Raphaël Bayle ,
  • Jean-David Wheeler ,
  • Renan Ravetti ,
  • d  Patrick Namy ,
  • Olivier Ludemann-Hombourger 
  • a,b,d   SIMTEC, 5 rue Felix Poulat, 38000 Grenoble, France
  • c,e POLYPEPTIDE GROUP, 7 rue de Boulogne, 67100 Strasbourg, France
Cite as
Bayle R., Wheeler J.D., Ravetti R., Namy P., and Ludemann-Hombourger O. (2022).,Modelling of the rinsing of a Fixed Bed Reactor for Solid Phase Peptide Synthesis using COMSOL Multiphysics®. Proceedings of the 34th European Modeling & Simulation Symposium (EMSS 2022). , 011 . DOI: https://doi.org/10.46354/i3m.2022.emss.011

Abstract

Solid Phase Peptide Synthesis (SPPS) requires finely designed reactor. While the process itself is tuned during a lab-scale procedure, the scale-up to production size reactor opens new challenges. The efficiency of the reaction and the quality of the final  substance can be made like the lab-scale results, but it requires to master the critical scale up parameters. In this study, the  process design is secured by using a numerical model. The fluid flow in the whole reactor and more specifically in the fixed resin bed during the draining steps is modelled in a realistic way through Brinkman equation and the appropriate boundary conditions.
Using this computed fluid flow, the rinsing of the reactor can be studied by modelling the reagents to eliminate with particles whose trajectories are driven by the previously computed fluid flow.

References

  1. Bray, A. M., Joe Maeji, N., & Mario Geysen, H. (1990). The simultaneous multiple production of solution
    phase peptides; assessment of the geysen method of simultaneous peptide synthesis. Tetrahedron Letters,
    31(40), 5811–5814. https://doi.org/10.1016/S0040-4039(00)97966-8
  2. Curtius, T. (1881). . J. Prakt. Chem., 24, 239.
  3. Du Vigneaud, V., Ressler, C., Swan, J. M., Roberts, C. W., Katsoyannis, P. G., & Gordon, S. (1953). The Synthesis of an Octapeptide Amide With The Hormonal Activity of Oxytocin. Journal of the American Chemical Society, 75(19), 4879–4880. https://doi.org/10.1021/JA01115A553/ASSET/JA01115 A553.FP.PNG_V03
  4. Fischer, E. (1902). .Ber. Dtsch. Chem. Ges.,35, 1095.
  5. Fischer, E. (1906). .Ber. Dtsch. Chem. Ges.,39, 530.
  6. Habchi, W., Eyheramendy, D., Vergne, P., & Morales-Espejel, G. E. (2008).A full-system approachto theelastohydrodynamic line/point contact problem.Journal of Tribology,130(2), 21501–21510.
  7. Hofmeister, F. (1902). .Physiol. Biol. Chem. Exp.Pharmacol.,1, 759.
  8. Hughes, T. J. R., Franca, L. P., & Hulbert, G. M. (1989). Anew finite element formulation for computationalfluid dynamics: VIII. The galerkin/least-squaresmethod for advective-diffusive equations.ComputerMethods in Applied Mechanics and Engineering,73(2),173–189. https://doi.org/10.1016/0045-7825(89)90111-4
  9. Le Bars, M., & Worster, M. G. (2006). Interfacialconditions between a pure fluid and a porousmedium: implications for binary alloysolidification.Journal of Fluid Mechanics,550,149–173. https://doi.org/10.1017/S0022112005007998
  10. Merrifield, R. B. (1963). Solid Phase Peptide Synthesis. The Synthesis of a Tetrapeptide.Journal of the American Chemical Society,85(14), 2149–2154.https://doi.org/10.1021/JA00897A025/ASSET/JA00897A025.FP.PNG_V03
  11. Nield, D. A., & Bejan, A. (2017). Convection in porousmedia.Convection in Porous Media, 629–982.https://doi.org/10.1007/978-3-319-49562-0/COVER
  12. Ravetti Duran, R., & Ludemann-Hombourger, O.(2022). SPPS: process improvements to reducesolvent consumption.Spec Chem Mag, 40–43.
  13. Strubel, V. (2016). Particle Entrapment in EHD Contacts-Aerospace Applications.Doctoral Dissertation, INSAde Lyon.
  14. The Finite Element Method: Solid mechanics-O. C.Zienkiewicz, Robert Leroy Taylor, R. L. Taylor,RobertLee Taylor-Google Livres. (n.d.).