Modelling of a Multifunction Electromagnetic Interference Shield and Heat Exchanger Device for a Multirotor Drone

  • Jean-David Wheeler ,
  • Nicolas Texier,
  • Michelle Malara,
  • Thierry Sanlaville,
  • Vincent Seconda, 
  • Vincent Sousselier, 
  • Jean-Marc Dedulle, 
  • h Patrick Namy 
  • a,c,g,h  SIMTEC, 5 rue Félix Poulat, Grenoble, 38000, France
  • b,d,e,f Parrot Drone SA., 174 quai de Jemmapes, Paris, 75010, France
Cite as
Wheeler J.D, Texier N., Malara M., Sanlaville T., Seconda V., Sousselier V., Dedulle J.M, and Namy P. (2022).,Modelling of a Multifunction Electromagnetic Interference Shield and Heat Exchanger Device for a Multirotor Drone. Proceedings of the 34th European Modeling & Simulation Symposium (EMSS 2022). , 014 . DOI: https://doi.org/10.46354/i3m.2022.emss.014

Abstract

Whereas the processing capacity of multirotor drone increases significantly, the specification applying to the hardware to dissipate the heat becomes more challenging. At the same time, the weight must be reduced, and the electromagnetic  vulnerability must still be prevented. In this study, the authors aim at increasing the performance of the drone by taking  advantage of new material properties and a science-based approach. A numerical model of the heat transfers in the drone is developed using COMSOL Multiphysics®. Moreover, two specific analytical models from the literature are identified and solved to predict the shield performance. Thanks to the physic predictions, it is possible to determine the minimum material quantity to achieve the best performances. Design guidelines are derived for the engineers to develop the next generation of multirotor drones.

References

  1. Bethe, H. A. (1944). Theory of Diffraction by SmallHoles.Physical Review,66(7–8), 163.https://doi.org/10.1103/PhysRev.66.163
  2. García Barreras, C. (2015).Design of a quadcopter towork at high temperatures[Universidad Carlos IIIde Madrid]. https://e-archivo.uc3m.es/handle/10016/26822
  3. Kim, S., Noh, Y. H., Lee, J., Lee, J., Choi, J. S., & Yook, J.G. (2019). Electromagnetic Signature of aQuadcopter Drone and Its Relationship withCoupling Mechanisms.IEEE Access,7, 174764–174773.https://doi.org/10.1109/ACCESS.2019.2956499
  4. Leech, J. W.(1966). The Feynman lectures on physics.InPhysics Bulletin(Vol. 17, Issue 10). IOPPublishing. https://doi.org/10.1088/0031-9112/17/10/010
  5. Li, Y., Ding, Q., Li, K., Valtchev, S., Li, S., & Yin, L.(2021). A Survey of Electromagnetic Influence onUAVs from an EHV Power Converter Stations andPossible Countermeasures.Electronics 2021, Vol.10, Page 701,10(6), 701.https://doi.org/10.3390/ELECTRONICS10060701
  6. Mach, V., Kovář, S., Valouch, J., Adámek, M., & Silva, R.M. S. (2017). Threshold levels of electromagneticsusceptibility for unarmed air vehicles.Progressin Electromagnetics Research Symposium,2017-November, 2483–2488.https://doi.org/10.1109/PIERS-FALL.2017.8293553
  7. Maxwell, E. (1947). Conductivity of metallic surfaces atmicrowave frequencies.Journal of Applied Physics,18(7), 629–638.https://doi.org/10.1063/1.1697818
  8. Maxwell, J. C. (1873).A Treatise on Electricity andMagnetism: vol1(Clarendon Press Series (Ed.)).Macmillan and co.
  9. Mendoza-Mendoza, J. A., Gonzalez-Villela, V. J.,Aguilar-Ibañez, C. F., & Fonseca-Ruiz, L. (2021).Drone Design Concepts.Drones to Go, 1–38.https://doi.org/10.1007/978-1-4842-6788-2_1
  10. Sun, J., Wang, W., & Yue, Q. (2016). Review onMicrowave-Matter Interaction Fundamentalsand Efficient Microwave-Associated HeatingStrategies.Materials 2016, Vol. 9, Page 231,9(4),231. https://doi.org/10.3390/MA9040231