Optimization of the Drying Time of Industrial Solvents: Numerical Modelling within COMSOL Multiphysics®

  • Frédéric VIRY ,
  • Magali STURMA,
  • Patrick NAMY,
  • Bruno BARBET
  • a,c  SIMTEC, 5 rue Félix Poulat, 38000 Grenoble, France
  • b ,d MARKEM-IMAJE, 9 rue Gaspard Monge, 26500 Bourg-lès-Valence, France
Cite as
 Viry F., Sturma M., Namy P., and Barbet B. (2022).,Optimization of the Drying Time of Industrial Solvents: Numerical Modelling within COMSOL Multiphysics®. Proceedings of the 34th European Modeling & Simulation Symposium (EMSS 2022). , 016 . DOI: https://doi.org/10.46354/i3m.2022.emss.016

Abstract

In the field of industrial inkjet marking, the drying time to evaporate the solvent is a key factor of the process productivity. In order to optimize it, a new approach of the drying process is assessed numerically in this paper. An air blade is used to push away  the newly evaporated solvent to reduce the local solvent partial pressure. Therefore, it maximizes the vaporization flux. This idea  is implemented within the software COMSOL Multiphysics®. The air flow is computed through the Navier-Stokes equation, and the solvent concentration is modelled by a convection-diffusion equation. The vaporization profile is assessed in several configurations. Eventually, the numerical results show that the air blade reduces dramatically the drying time. By this way and given a drying time in industrial environment, one can consider a broader family of solvent, i.e. less volatile solvent compared to so called MethylEthylKetone.

References

  1. Castrejon-Pita, J. R., Baster, W. R., J., M., S., T., & M., M.G. (2013).Future, Opportunities and Challenges ofInket Technologies.Atomization and Sprays, 23(6),541-565.
  2. COMSOL. (2020). COMSOL Multiphysics® v. 5.6.www.comsol.com. Stockholm, Sweden.
  3. COMSOL. (2020). Numerical Stabilization. DansCOMSOL,COMSOL Multiphysics, Reference Manual, COMSOL 5.6(pp. 224-230).
  4. Gaubert, Q. (2017).Caractérisation et modélisation desphénomènes gouvernant le séchage par atomisation desuspensions colloïdales.Phd thesis, Ecole doctorale353.
  5. Hughes, T. J., Franca, L. P., & Balestra, M. (1986,November). A new finite element formulation forcomputational fluid dynamics: V. Circumventingthe babuška-brezzi condition: a stable Petrov-Galerkin formulation of the stokes problemaccommodating equal-order interpolations. Computer Methods in Applied Mechanics and Engineering, 59(1), 85-99.
  6. Le, H. P. (1999). Progress and Trends in Ink-jet PrintingTechnology.Recent Progress in Ink Jet Technologies II,
    1-14.
  7. Numata, M., Sakamoto, A., Ogasawara, Y., Hatanaka,M., Motosugi, Y., & Morita, N. (2013). DryingTechnology Using Laser Exposure for High-speedInkjet Printing.NIP & Digital Fabrication Conference.