Numerical modelling of aluminothermic reduction for low-carbon-footprint silicon production

  • Sergey Semenov ,
  • Raphaël Bayle,
  • Patrick Namy
  • a,b,c  SIMTEC, 5 Rue Felix Poulat, Grenoble, 38000, France
Cite as
Semenov S., Bayle R., and Namy P. (2022).,Numerical modelling of aluminothermic reduction for low-carbon-footprint silicon production. Proceedings of the 34th European Modeling & Simulation Symposium (EMSS 2022). , 017 . DOI: https://doi.org/10.46354/i3m.2022.emss.017

Abstract

Silicon production usually employs carbon to reduce quartz. A new process using secondary aluminium instead of carbon, and, thus avoiding producing carbon dioxide, is currently being studied. Two immiscible phases are involved in the process, a metal phase, initially composed of aluminium, and a slag phase, initially composed of a mix of lime and quartz. Present numerical work studies different phenomena that contribute to the reaction kinetics, namely diffusion, soluto-gravitational convection and thermo-soluto-gravitational convection. The impact of forced convection on the global reaction rate is also studied. For this purpose, two numerical models, including chemical, thermal and fluid dynamics aspects, are developed: a model where the metal-slag interface is fixed and explicitly represented and a diffuse interface model. The models are numerically solved using the finite element method within the software COMSOL Multiphysics®. The proposed methodology is totally new due to modelling of all physical phenomena in a fully coupled way. The aim of this work is to gain insight into the phenomena contributing to the global reaction rate, which is a critical parameter to control in the silicon production process. The novelty of approach consists in assessing the impact of individual phenomena by incrementing progressively the complexity of models

References

  1. Amini, S. H. (2005). Dissolution rate and diffusivity oflime in steelmaking slag and development offluoride-free fluxes, PhD thesis.
  2. Bruzzone, A. G., Sinelshikov, K., Cepolina, E.,Giovannetti, A., & Pernas, J. (2021). Autonomoussystems for industrialplants and iron & steelfacilities. Proceedings of the 33rd EuropeanModeling & Simulation Symposium (EMSS 2021),(pp. 418-422).
  3. Deqing, W., & Ziyuan, S. (2001). Aluminothermicreduction of silica for the synthesis of alumina-aluminum-silicon composite. Journal of MaterialsSynthesis and Processing, 9(5), 241-246.
  4. Doering, C. R. (2020). Turning up the heat in turbulentthermal convection. Proceedings of the NationalAcademy of Sciences, 117(18), 9671–9673.
  5. Drew, D. A., & Passman, S. L. (1999). Theory ofmulticomponent fluids, Applied mathematicalsciences (Vol. 135). New York: Springer.Drew, D. A., & Passman, S. L. (1999). Theory ofmulticomponent fluids, Applied mathematicalsciences (Vol. 135). New York: Springer.
  6. Du, Y., Chang, Y., Huang, B., Gong, W., Jin, Z., Xu, H., . .. Xie, F.-Y. (2003). Diffusion coefficients of somesolutes in fcc and liquid Al: critical evaluation andcorrelation. Materials Science and Engineering: A,363(1-2), 140–151.
  7. Fang, D.-L., Zhao, Y.-C., Wang, S.-S., Hu, T.-S., &Zheng, C.-H. (2020). Highly efficient synthesis ofnano-Si anode material for Li-ion batteries by aball-milling assistedlow-temperaturealuminothermic reduction. Electrochimica Acta,330, 135346.
  8. Gao, S., Yang, D., Pan, Y., Geng, L., Li, S., Li, X., . . . Yang,H. (2019). From natural material to high-performance silicon based anode: Towards cost-efficient silicon based electrodes in high-performance Li-ion batteries. Electrochimica Acta,327, 135058.
  9. Jiang, K., Chen, Z., Ma, W., Cao, S., Zhang, H., & Zhu, Y.(2021). Effect of Carbonaceous Reducers on CarbonEmission during Silicon Production in SAF of 8.5MVA and 12.5 MVA.Silicon, 1–11.
  10. Liu, X., Lu, J., Jiang, J., Jiang, Y., Gao, Y., Li, W., . . .Zhang, J. (2021). Enhancing lithium storageperformance by strongly binding silicon nanoparticles sandwiching between sphericalgraphene. Applied Surface Science, 539, 148191.
  11. Mirjalili, S., Jain, S. S., & Dodd, M. (2017). Interface-capturing methods for two-phase flows: Anoverview and recent developments. Center forTurbulence Research Annual Research Briefs,2017(117-135), 13.
  12. Mishra, K., Zheng, J., Patel, R., Estevez, L., Jia,H., Luo,L., . . . Zhang, J.-G. (2018). High performance porousSi@C anodes synthesized by low temperaturealuminothermic reaction. lectrochimica Acta, 269,509-516.
  13. Park, J., Sridhar, S., & Fruehan, R. J. (2014). Kinetics ofreduction of SiO2 in SiO2-Al 2O3-CaO slags by Al in
    Fe-Al(-Si) melts. Metallurgical and MaterialsTransactions B, 45, 1380-1388.
  14. Philipsson, H., Wallin, M., Einarsrud, K. E., & Tranell, G.(2021). Kinetics of Silicon Production byAluminothermic Reduction of Silica UsingAluminum and Aluminum Dross as Reductants. In A.N. Waernes, G. Tranell, M. Tangstad, E. Ringdalen, &C. van der Eijk (Ed.), Proceedings of the 16thInternational Ferro-Alloys Congress (INFACONXVI) (pp. 1-10). Trondheim, Norway:SINTEF/NTNU/FFF.
  15. Pizzini, S. (1984). Solar grade silicon versus electronicgrade silicon for photovoltaic applications. Journalof power sources, 11(1-2), 115-118.
  16. Prabriputaloong, K., & Piggot, M. R. (1973). Reductionof SiO2 by Molten Al. Department of ChemicalEngineering, University of Toronto, Toronto,Ontario, Canada, 184-185.
  17. Ramaekers, K., Pollaris, H., & Claes, L. (2014).Analysing and optimising a dual resource constraintproduction system using simulation. Proceedings ofthe International Conference on Modeling andApplied Simulation,(pp. 54-59). Bordeaux, France.
  18. Roberts, S., & Dobson, P. (1984). Evidence for reactionat the AI-SiO, interface. J. Phys. D: Appl. Phys., 14.
  19. Talako, T. L., Yakovleva, M. S., Astakhov, E. A., & Letsko,A. I. (2018). Structure and properties of detonationgun sprayed coatings from the synthesized FeAlSi/Al2O3 powder. Surface and CoatingsTechnology, 353, 93-104.
  20. Tkadleckova, M. (2021). Numerical Modelling in SteelMetallurgy. Metals, 11(6), 885.
  21. Whitaker, S. (1985). A simple geometrical derivation ofthe spatial averaging theorem. Chemicalengineering education, 19, 18–52.
  22. Zhang, J., Si, Y., Leng, C., & Yang, B. (2016). Moleculardynamics simulation of Al-SiO2 sandwichnanostructure melting and low-temperatureenergetic reaction behavior. RSC advances, 6(64),59313-59318.