Contact Resistance Influence in Numerical Simulation of Resistance Sintering

  • J.Amovin-Assagba ,
  • V.Bruyere,
  • P.Namy,
  • C.Durand,
  • S.Roure
  • a,d,e SCHNEIDER ELECTRIC, EYBENS, France
  • b,c SIMTEC, 5 rue Felix Poulat, GRENOBLE France
Cite as
Amovin-Assagba J., Bruyère V., Namy P., Durand C., and Roure S. (2022).,Contact Resistance Influence in Numerical Simulation of Resistance Sintering. Proceedings of the 34th European Modeling & Simulation Symposium (EMSS 2022). , 018 . DOI: https://doi.org/10.46354/i3m.2022.emss.018

Abstract

Resistance sintering is a fast-sintering process used to compact and form a metallic part thanks to heat and pressure. To better control the geometry of the sintered material, a multi-physical model has been developed. To describe the current flow, the thermal exchanges and the mechanical aspects, this model requires the use of precise material properties as well as the knowledge of contact resistances. Indeed, these parameters are of first importance to describe the energy distribution in the system and the resulting metallurgical state. Different approaches have been compared in this work to study their influence on the values of  interest. By considering the contact resistances as a function of pressure and temperature, this full 3D multi-physical approach offers a new tool to precisely predict the geometry of the resulting assembly.

References

  1. Z. Feng,H. Champliaud, (2015),Modeling andSimulation based on Finite Element Method forElectron Beam Welding,Proceedings of theEuropean Modeling and Simulation Symposium,2015.
  2. A. López, J. A. Somolinos, L. R. Núñez, A. M. Carneros(2011),Simulation of Gesmey GeneratorManouevers,Proceedings of the European Modelingand Simulation Symposium, 2011.
  3. J.L. Wintz, S. Hardy, (2013), Designguideline ofcontactors: Optimal use of assembled contacts,Holm Conference on ElectricalContacts (HOLM),IEEE 59th, p 1-6. https://doi.org/10.1109/HOLM.2014.7031014
  4. Vanmeensel , A. Laptev, H. Sheng, I. Tkachenko, O.Van der Biest, J. Vleugels, (2013), Experimentalstudy and simulation of plastic deformation ofzirconia-based ceramics in a pulsed electric currentapparatus, Acta Materialia 61 2376–2389
  5. C. Manière,U. Kus,L. Durand,R. Mainguy,J. Huez,D. Delagnes,C. Estournès, (2016), Identification of theNorton‐Green Compaction Model for the Predictionof the Ti–6Al–4V Densification During the SparkPlasma Sintering Process, Advanced EngineeringMaterials, Vol 18, Issue 10, p 1720-1727.
  6. Bourdon, V. Bruyère, P. Rogeon, P. Namy, C. Durand,S.Roure, (2020), Numerical Simulation Of Electro-Thermo-Mechanical Phenomena During ResistanceSintering, Comsol Conference 2020.
  7.  Geslain, P. Rogeon, T. Pierre, C. Pouvreau, L.Cretteur,(2018), Coating effects on contactconditions in resistance spot weldability, Journal of Materials Processing  Technology,Volume 253,March 2018, Pages 160-167.
  8.  Charron,(1943),“Partage de la chaleur entre deuxcorps frottants,”Publication Scientifique etTechnique du Ministère de l’Air, no.182.
  9. Cetinkale and M.Fishenden,(1951),«Thermalconductance of metal surface in contact »,Proceeding of general discussion on heat transfer,p.271à-275.
  10. Yovanovich, J.WDeVaal,(1982),«A statistical model to predict thermal gap conductance between conforming rough surfaces» 3rd jointthermophysics, fluids, plasma and heat transfer conference, June 7-11, St-Louis, Missouri.
  11. S.Song, M.Yovanovich,(1992)«Thermal gapconductance : Effects of gas pressure andmechanical load», AIAA 27 the Aerospaces meeting.
  12. B. Mikic, (1974),Thermal contact resistance; Theoreticalconsiderations, Department of MechanicalEngineering, Massachusetts Institute ofTechnology, Int J. Heat Mass Transfer. Vol. 17, pp.205-214.
  13. M. Cooper, B. Mikic, M.Yovanovich(1969), Thermalcontact conductance, Int J. Heat Mass Transfer. Vol.12, pp. 279-300.
  14. J. A.Greenwood and J. B. P. Williamson(1966),Contactof nominally flat surfaces. Proc. R. Sot.. Lond. 295,300-319.