Proceedings of the 33" European Modeling & Simulation Symposium (EMSS), 020
18th International Multidisciplinary Modeling & Simulation Multiconference

2724-0029 © 2022 The Authors.
doi: 10.46354/i3m.2022.emss.020

Model Verification in Graph Databases and its Application
in Neo4j

Christoph Praschl®*, Andreas Pointner?, Oliver Krauss!, Emmanuel Helm! and
Andreas Schuler?!

University of Applied Sciences Upper Austria, Hagenberg i. M., Austria

*Corresponding author. Email address: christoph.praschl@fh-hagenberg.at

Abstract

This work introduces a concept for rule based model verification using a graph database on the example of Neo4j and its query language
Cypher. An approach is provided that allows to define verification rules using a graph query language to detect transformation errors
within a given domain model. The approach is presented based on a running example, showing its capability of detecting randomly
generated errors in a transformation process. Additionally, the method’s performance is evaluated using multiple subsets of the IMDb
movie data with a maximum of 17,000,000 nodes and 41,000,000 relationships. This performance evaluation is carried out in
comparison to the Object Constraint Language, showing advantages in the context of highly connected datasets with a high number of
nodes. Another benefit is the utilization of a well established graph database as verification tool without any need for re-implementing

graph and pattern matching logic.

Keywords: Model Verification; Graph-based Modeling; Neo4j; Cypher

1. Introduction

In this work, an approach is presented that allows the ver-
ification of model transformations using graph databases,
enabling efficient verifications. If an application already
uses a graph database for persisting the data, the presented
approach also has the advantage that no additional tooling
is required for the verification, since the required verifica-
tion mechanisms are already available in the database.
Model transformations are widely used in the context
of software development to adapt a given model to a par-
ticular use case. One example for such transformations
is the automatic code generation from UML diagrams as
discussed by Sunitha and Samuel (2019), where a chart
model is transformed to an abstract syntax tree model. To
ensure the correctness of transformations, the resulting
models have to be verified. For this task, this work intro-
duces a verification approach based on graph databases.

Models abstract parts of the real world using only rel-
evant properties. They are used in different aspects and
stages in the process of software development — begin-
ning with class diagrams using UML, to domain models or
database models. In model driven development (c.f. Atkin-
son and Kuhne (2003)), models play a central role in creat-
ing software, by using models as a basis for creating code.
For example, UML class models can be used for automati-
cally creating the domain classes of a system for different
or multiple programming languages.

In different stages of the development process, as well
as in dissimilar parts of the actual system, it is common
to have various models describing the same aspect from
multiple perspectives. To transform from one model to an-
other, several model transformation techniques are used.
The correctness of the target model in reference to the
source model has to be ensured. The challenge is to ver-

© 2021 The Authors. This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

https://creativecommons.org/licenses/by-nc-nd/4.0/.

33" European Modeling & Simulation Symposium, EMSS 2022

ify if the information of the source model is transformed
correctly into the target model and no information is lost.
This is crucial since developers must be able to rely on the
correct semantic information to transfer from one model
to another as described by Lano et al. (2012a). Examples of
verifications in the context of a model to model transfor-
mation like UML to relational database transformations
are given by Lano et al. (2012b).

This work introduces an approach for model verifi-
cation using a database and a query language for the
definition of verification rules. The utilization of a
graph database (GBD) is proposed instead of a relational
database to overcome the problem of the object—relational
impedance mismatch as described by Ireland et al. (2009).
The presented approach is used to ensure the correct-
ness of a transformation by analyzing the target model,
or by comparing the source and the associated target in-
stances. The general usage of the verification approach is
shown based on a running example. The performance is
evaluated based on a case study using the IMDb dataset
(c.f. IMDb.com, Inc (2022)) and is compared to the state-
of-the-art model verification framework the Object Con-
straint Language (OCL) introduced by OMG (2006).

This work aims to answer the following research ques-
tions:

+ RQq: How can model transformations be verified in graph
databases?
Itis examined if errors in a result model stemming from
a faulty model transformation process can be detected
using a GBD in combination with a query language.

+ RQ,: How does a graph database based verification per-
form and scale?
The performance of a verification process can be a cru-
cial point depending on the use case. In certain circum-
stances, a verification is needed in a short amount of
time. Since a model instance can consist of millions of
objects depending on the use case, the scaling of the
approach can be another crucial factor besides the per-
formance of the verification approach.

In context of the stated questions, this work makes the
following contributions:

- A novel model verification approach using a GBD
- A case study evaluating the approach’s performance
- A comparison between the presented approach and OCL

2. Approach

The verification approach is described based on the graph
database Neo4j in combination with the graph query lan-
guage Cypher. The query language is used to define veri-
fication rules, which are applied to the model. If all rules
are fulfilled, the verification process is rated as successful.
The architecture for a verification service as well as user
defined functions in the context of model verification are
presented.

2.1. Verification framework

The core concept of the presented graph database verifi-
cation approach is to persist the specific models in a first
step and to define verification rules using a query language
which are evaluated on the models in a second step.

To be able to create a verification framework provid-
ing this functionality, it is necessary to encapsulate the
Cypher queries, that should be executed. The presented
architecture distinguishes between two types of queries.
On the one hand queries which return a single value result,
e.g. for the result of counting specific nodes or boolean
evaluations, and on the other hand queries which return
a list of results. For this reason, the architecture differ-
entiates between TypedQuery and MultiResultTypedQuery
— both used as wrapper for the actual Cypher query. The
MultiResultTypedQuery class is derived from TypedQuery,
since the only difference is the result type as list of entries.
This architecture is shown in Figure 1.

DualVerifier<T, S> Verifier<T>

+ verify(T, S): boolean
/?\ Use Use /i
DualTypedQuery<T, S>

+ verify(T): boolean

TypedQuery<C>

+ query1: TypedQuery<T> U + query: String
se

+ query2: TypedQuery<S> L- > + verifier: Verifier<C>
+ verifier: DualVerifier<T,S> + resultType: Class<C>

+ isSingleResultQuery : bool

Extends 4

MultiResultTyped-
Query<C>

Figure 1. Architecture for a query based verification framework. TypedQuery
represents one verification query, which wraps the native Cypher query,
its expected result type and an associated Verifier. The verifier is used to
evaluate the query’s result and for this represents the actual verification
process. The MultiResultTypedQuery is an extension of the TypedQuery and
represents a query with a collection of result values. The DualTypedQuery
wraps two TypedQuery objects and compares their result for the verification.

Neo4j provides the possibility of returning results with
dynamic data types. This is left out for the verification,
since it requires an additional parsing process with stat-
ically typed languages such as Java. In addition to the
actual Cypher query, both query wrappers (TypedQuery,
MultiResultTypedQuery) contain a verifier, which evalu-
ates the query result. A verifier takes the result and re-
turns a boolean value, which signals if the result is correct.
An appropriate verifier must be used depending on what
should be verified with the specific query. In the simplest
form, the query itself already returns a boolean value, rep-
resenting if the verification holds or not. In such cases,
the verifier only forwards the query result. Additionally,
a verifier can be implemented for equality checks of the
result with a value comparison.

Based on the concept of single result and multi re-
sult queries, another concept called DualTypedQuery is in-
troduced. While TypedQuery and MultiResultTypedQuery
can have any result which is evaluated independently,
the idea of the DualTypedQuery wrapper is to execute two
queries and to compare their results. For this reason, a
DualTypedQuery consists of two TypedQuery instances and
aDualVerifier which is responsible for the result compar-
ison (shown in Figure 1). Such a DualVerifier can be used
if the verification should be done by comparing the source
and the target model, instead of only analyzing the target.

2.2. User-defined APOC procedures

One crucial functionality for verifications using graphs
is the possibility of comparing the equality of two nodes.
Neo4j only provides the possibility for id-based equality
checking or alternatively manually comparing a node via
property based match clauses in a Cypher query. To en-
hance the equality mechanism of Neo4j, additional user-
defined procedures can be created using Neo4j’s APOC
framework as described by Neo4j, Inc. (2021). For this
reason, this work introduces a user defined procedure
called equals(). This method expects two nodes A and
B, as well as two lists L, and Lg, each containing n prop-
erty names for the associated node. These property lists
are used for the actual equality checking. With this pur-
pose, the position of each element in the first list must be
equal to the position of the corresponding property in the
second list. This is defined by a function f : A(Ls(i)) =
B(Lg(i)) | i = [0, n). The implementation of this equality
check is shown in Algorithm 1in the form of a user defined
procedure for the Neo4j graph database. Since APOC is a
framework based on the turing-complete programming
language Java, it can be used to extend the verification
mechanism in any way.

3. Evaluation

The evaluation is done in two ways. On the one hand,
a functional evaluation and on the other hand, a perfor-
mance comparison is carried out. The functional evalu-
ation is done using a running example, while the perfor-
mance measurement is done in comparison to OCL using
the public IMDDb dataset. Both analyses are based on the
Neo4j Community Edition 4.3.6 with the APOC extension
£4.3.0.4. In addition to that, Eclipse’s OCL implementation
in the version 3.10 is used. All tests are executed using an
AMD Ryzen 9 3900 X 12-Core processor with 64 GB RAM.

3.1. Functional Evaluation

The functional evaluation is based on mutation testing as
described by DeMillo et al. (1978), which can be applied in
model transformation as stated in Mottu et al. (2006) and
Guerra et al. (2019). In this example, n three-dimensional
polygons are randomly created, where each polygon con-

Praschl et al.

Algorithm 1: User defined function for comparing
two nodes based on given property lists.

Data: n1, n2: Nodes to be compared;
P1, p2: Property names of associated nodes;
Result: Boolean value that represents given nodes
are equal based on their properties.

1 @UserFunction('"nodeEquals')
2 public boolean equals(
3 @Name(''n1") Node n1, @Name(''n2") Node n2,
4 @Name("p1'") List<String> p1, @Name(''p2")
List<String> p2) {

if(p1.size() != p2.size()) return false;

return IntStream.range(0, p1.size())
7 .mapToObj(i -> Pair.of(p1.get(i),

p2.get(i)))

8

[N}

.allMatch(p -> Objects.equals(
ni.getProperty(p.first(), null),

10 n2.getProperty(p.second(), null)

1)

12);

13}

sists of m three-dimensional points. Every point is defined
by the three coordinates x, y and z. Those polygons are
transformed to two-dimensional counterparts, by remov-
ing the z-coordinate. The transformation is randomly
executed incorrectly, leading to different types of transfor-
mation errors. As shown in Figure 2 one or multiple of the
following errors can occur during the transformation:

(a) Removing the transformed Polygon2D from the result

(b) Deleting the resulting Point2D

(c) Mixing the values of the points’ coordinates, sox’ = y
and y' = x applies for a transformation t(P(x,y,z)) =
P'(X',y")

(d) Keeping the z-coordinate, so a Point2D still consists
of 3D information

(e) Adding additional, artificial properties to a Point2D

Polygon3dD f========== > Polygon2D
List<Point3D> e List<Point2D>
1 1
N N
o
Point3D pe========== > Point2D
: doubl : doubl
o] |....0.... [»re]
T R e LT
a2t @

Figure 2. The running example with three- and two-dimensional polygons
and associated points, which are randomly transformed incorrectly. The
errors are labelled from a to e.

33" European Modeling & Simulation Symposium, EMSS 2022

Algorithm 2: Query to compare the number of Poly-
gon3D and Polygon2D nodes.

Result: Boolean that signals if the number of
Polygon3D and Polygon2D nodes is equal.
1 MATCH(n:Polygon3D), (x:Polygon2D)
2> WHERE (n)--(x)
3 RETURN count(n) = count(x);

Algorithm 3: Query to compare the number of cre-
ated Point2D nodes with the number of the Point3D
in the original polygon.

Data: SpolylId: Id of the Polygon3D to check
Result: Boolean that signals if the number of points
is equal in the polygons.
1 MATCH(n:Polygon3D)-->(p3:Point3D)
2 WHERE id(n)=$polyld
3 OPTIONAL MATCH
(n)--(:Polygon2D)--(p2:Point2D)
4 RETURN COUNT(DISTINCT(p2)) =
COUNT(DISTINCT(p3));

Algorithm 4: Query to compare all points of the
created Polygon2D with the source points in its 3D-
counterpart.

Data: Spointld: Id of the Point3D
Result: Boolean that signals if the number of points
is equal in the polygons.

1 MATCH (poly3d:Polygon3D),

2 (poly2d:Polygon2D),

3 (p3:Point3D), (p2:Point2D)

4 WHERE (p3)--(poly3d)--(poly2d)--(p2)

5 AND id(p3) = SpointId

6 AND nodeEquals(p2, p3, [“x”, “v”])

7 AND size(keys(p2)) = size(keys(p3)) - 1
8 RETURN p2 IS NOT NULL;

To validate the functionality of the proposed framework,
the randomly created errors should be detected with suit-
able verification rules. For this task, the mentioned trans-
formation process logs which transformed elements con-
tain an error, and the type of error that was introduced.
This information is not used by the verification and is also
not stored in the database. It is only used as ground truth
to evaluate the correctness of the verification process.

Based on the presented running example, the follow-
ing Cypher queries are used as verification rules to de-
tect the mentioned errors: The first statement shown in
Algorithm 2 checks if a Polygon2D was created for every
three-dimensional entity. The second statement shown
in Algorithm 3 is executed once for every Polygon3D. It se-
lects the polygon with the given id and tries to match the

corresponding Polygon2D. Then it compares the number
of points of both associated polygons. The third and most
sophisticated statement shown in Algorithm 4 iterates
over every Point3D for a given Polygon3D from the source
model and checks if there is a matching Point2D in the cor-
responding Polygon2D regarding the point’s x and y prop-
erties. This query also checks if a Point2D has exactly one
property less than its corresponding Point3D (two instead
of three), due to the missing z-coordinate.

The presented verification framework executes all
those queries once per model (first query), per polygon
(second query) and respectively per point (third query) in
a polygon. If all queries result in a positive result (true) the
model is valid and the transformation is correct, otherwise
a faulty transformation is detected.

3.2. Performance Evaluation

In terms of evaluating the performance of the proposed
approach, a case study is carried out. This study is
based on parts of IMDb’s dataset namely the person data
(name.basics), the movie data (title.basics) and the associ-
ations between movies and persons (title.principals). The
structure of the used data is shown in Figure 3. This data
set is imported into an empty Neo4j graph database using
an open-source Java-based importer published by Point-
ner and Praschl (2020). For the OCL based comparison,
the same data is also imported into an Ecore model us-
ing another open-source implementation published by
Praschl and Pointner (2021). After the import process
both models consist of 10,647,967 entries, which are com-
posed of 4,152,840 persons and 6,495,127 movies, and
41,108,868 relationships between the two entities for the
complete data set. In addition to this complete version,
six smaller subsets are created, that enable to evaluate the
performance of the approach. This is done by selecting
and persisting a limited number of n relationships with
n € {2500;40000;160000;625000;2500000;10000000}
and the associated nodes. The evaluation is executed using
50 warm up runs, as well as 50 execution runs with a time
limit of one hour per run based on the Neo4j and the OCL
approach.

Based on these subsets, multiple queries, respectively
constraints, are executed to ensure the model’s integrity
with different complex requirements for the model. These
queries can be separated into two groups of verification
rules:

1. Queries that only require knowledge of individual enti-
ties.

2. Queries that also require knowledge of associated enti-
ties based on existing relationships.

Regarding the first group, an initial query is used to
check if every person has an attribute called name (cf. Algo-
rithm 5 and Algorithm 6). The second query of this group
is used to ensure the uniqueness of an actor’s id prop-
erty(cf. Algorithm 11 and Algorithm 12). As mentioned,

Praschl et al.

Algorithm 5: Neo4j query 1 used as verification rule
for checking if every person has an attribute called
name.

Algorithm 7: Neo4j query 2 used as verification
rule for checking if every person is related with at
least one movie.

Result: True if all person nodes have the attribute
name, else False.

1 MATCH (n:Person) WHERE n.name IS NULL
RETURN COUNT(n) = 0;

Algorithm 6: OCL query 1 used as verification rule
for checking if every person has an attribute called
name.
Result: True if all person nodes have the attribute
name, else False.

1 context Root inv: self.persons—forAll(a | a.name <>
null)

these queries differ from the remaining two, as they only
require knowledge of the individual entities, without in-
cluding any relationships to other entities. The second
group in turn consists of two queries. One query that is
used to check if every person is related to at least one movie
(cf. Algorithm 7 and Algorithm 8) and another query that
is used to verify, that every actor (person with “actor” in
the primaryProfession list property) is also associated as
actor (relationship “part_of” with the value “actor” in
the category property) with at least one movie (cf. Algo-
rithm 9 and Algorithm 10). Every verification rule is exe-
cuted using the Neoj based approach as well as OCL and
the specific results are juxtaposed.

Person Movie

+id : String +id : String

+ name : String + primaryTitle: String
+ primaryProfession : List<String> + orginalTitle: String
+ birthYear: LocalDateTime + type: String

+ deathYear: LocalDateTime + isAdult: boolean

1

N + runtime: long

Part_of

+ category : String N

+ job : String

+ characters : List<String>

Figure 3. Class diagram of the used IMDb dataset showing the information
for a Person, a Movie and the association “part_of” between those entities.

Result: True if all person nodes that are of a
relationship, else False.
1 MATCH (p:Person) WHERE NOT
(p)-[:part_of]-(:Movie)
> RETURN COUNT(p) = 0;

Algorithm 8: OCL query 2 used as verification rule
for checking if every person is related with at least
one movie.

Result: True if all person nodes that are of a
relationship, else False.

1 context Root inv: self.persons—
> forAll(a | self.partOf —any(alm | a = alm.id) <>
null)

Algorithm 9: Neo4j query 3 used as verification
rule for checking if every actor is related with at
least one movie as actor.

Result: True if all person nodes with the
primaryProfession actor are also part of a
relationship with the category actor, else
False.

1 MATCH (p: Person) WHERE "actor' IN
p-primaryProfession

2 AND NOT (p)-[:part_of {category:
"actor'"}]-(:Movie)

3 RETURN COUNT(p) = 0;

Algorithm 10: OCL query 3 used as verification rule
for checking if every actor is related with at least
one movie as actor.

Result: True if all person nodes with the
primaryProfession actor are also part of a
relationship with the category actor, else
False.

1 context Root inv: self.persons—

2 select(a |
a.primaryProfession—includes(’actor’))—

3 forAll(a | self.partOf—

4 any(alm | a = aIm.id and alm.category =
’actor’) <> null

5)

33" European Modeling & Simulation Symposium, EMSS 2022

Algorithm 11: Neo4j query 4 used as verification
rule for checking if every actor’s id is unique.

Result: True if all values of the property id of the
person nodes are unique, else False.

1 MATCH(x:Person) RETURN
COUNT(DISTINCT(x.id)) = COUNT(x);

Algorithm 12: OCL query 4 used as verification rule
for checking if every actor’s id is unique.

Result: True if all values of the property id of the
person nodes are unique, else False.

1 context Root inv: self.persons—isUnique(a | a.id)

4. Results

This section lists the results of the functional as well as
the performance comparison. The functional compari-
son is carried using the presented verification approach
on a running example with a transformation from three-
dimensional to two-dimensional polygons on the one
hand. On the other hand, the performance evaluation is
done based on verifications for the IMDb data set, which
are compared to the state-of-the-art framework OCL.

4.1. Functional Results

Multiple experiments are tested for the polygon-based
running example using a different number of nodes that
are transformed during the process and evaluated using
the presented Cypher queries. Table 1 shows the number of
correctly and incorrectly created polygons/points (ground
truth) and the detected invalid nodes in the specific run.
The table shows that all incorrectly transformed nodes are
detected using the presented approach. The running ex-
ample shows, that the presented verification approach is
capable of detecting errors due to a model transformation.
Based on the results of this experiment the RQ. 1 “How can
model transformations be verified in graph databases?” is
answered. The experiment shows successfully the utiliza-
tion of the presented approach in the context of a model
verification process using Neoj, Cypher and APOC for the
given example.

4.2. Performance Results

In context of the RQ.2 “How does a graph database based
verification perform and scale?”, the results of the per-
formance evaluation are listed in Table 2 and show that
the present approach outperforms the Eclipse’s OCL im-
plementation in the most cases, based on the mean run
time and the standard deviation per query and subset. The
mentioned time limit is clearly exceeded by the second
OCL query, starting with the data set containing 625,000
relationships. For this reason, this run is incomplete, with

Table 1. Verification results of multiple experiments for the presented
running example, showing that all incorrectly transformed polygons and
points are detected by the presented framework

Number of Number of Number of
transformed polygons | transformed points detected faults
| Correct Incorrect Correct | Incorrect Faulty Fa%ﬂty
Polygons | Points
1 2 0 58 2 0 2
2 4 1 242 8 1 8
3 7 3 346 154 3 154
4 3 0 750 0 0 0
5 16 4 907 93 4 93
6 3 2 119 51 2 51
7 36 4 1895 105 4 105
8 39 1 2289 211 1 211

only two execution runs at all. Furthermore, the remain-
ing subsets are not executed. Next to Table 2, the Figures
4 to 7 compare the two approaches per query within a log-
arithmic scale. The first and fourth query in combination
with the first two subsets with 2,500 and 40,000 relation-
ships are the only examples in the evaluation, where OCL
outperforms Neo4j. In all other situations, the Neo4j based
approach is faster. Especially, queries not only considering
individual entities but also relationships show the perfor-
mance advantages of the graph based approach. This is
also highlighted in Figure 5 with a linear runtime com-
plexity O(n) using Neo4j and a quadratic complexity O(n*)
using OCL for the second query.

- —e— Neo4J
’ --®- OCL

Runtime (ms)

510k 2 5100k2 5 1M 2
Number of Relationships

5 10M 2 5

Figure 4. Run time comparison between Neo4j and OCL for the first query,
that checks if every person in the model has an attribute called name.

) —o— Neo4dJ

10M .- OCL

1M o

100k -1

N
=
=

1000

Runtime (ms)

o
o

10

1
1000 2

5 10k 2

5 100k 2
Number of Relationships

51M 2 510M2 5

Figure 5. Run time comparison between Neo4j and OCL for the second
query, that checks if every person is part of at least one relationship. Since
the execution of the OCL version exceeds the time limit of one hour, it is
not applied onto all data sets.

StDev
1.96
134.34
11.74
11.68
525.31
79.70
198.22

41,108,868
2.32
117

Mean
1,247.89
2,894.14
3,626.21
6,460.75
102,376.40
15.85
2,331.53
2,722.12

StDev
144
72.55
418
477
200.91
72.05
69.00

2.05

10,000,000
110

Mean
459.40
940.11
1,124.59
2,099.20
27,224.91
12.97
734.96
811.50

1.92

StDev
29.52
3.66
5.78
121.95
£47.69
51.85

1.93

2,500,000
1.18

Mean
196.95
380.56
433.80
760.55

7,892.92
10.38
303.06
357.78

1.12
0.35
132
1.40

84.96

50

5,770.55%
16.56

StDev
2.

625,000

Mean

173
8.41
63.36
7344
1.16

4573
79.07

95.18
21,373,379.76*
176.84
1,487.39

224,557.47*

1.11
0.10
1.84

17,115.71
1.70

50.70
1.17
133

StDev

160,000

OCLjtean/Ne04jyean)- Due to the runtime of 5.93 hours in average for the second OCL query with 625,000 relationships (*), the
Mean

11.49
19.66
1.71
22.09
977,367.68
39.71
2,072.02
52.18
16.81
18.79
1.12

442048

StDev
0.51
0.57
1.13

44,6.24,
112
5.84
0.42
0.30

40,000

Mean
5.48

5.01
0.91

7.89
65,751.80
8,333.56
1331
08.26
7.38

6.61

516

0.75

StDev
0.45
0.26
0.25
9.56
0.15
0.77
0.42
0.19

2,500

Mean
2.63
1.26
0.48
2.15
261.30
2.26
25.92
11.47
2.82
1.05
0.37

121.53

Neo4j
OCL
Speedup
Neo4j
OCL
Speedup
Neo4j
OCL
Speedup
Neo4j
Speedup

OCL

Query2
Query3
Querys

Table 2. Run time comparison (in ms) of the queries using Neo4j and OCL for various number of relationship in the used IMDb data subset. The speedup section shows the scaling factor between the
Query1

mean values for every query with OCL compared to Neo4j (speedup

setup is canceled after two runs and because of this situation it is not executed for the remaining subsets.

Praschl et al.

2
100k .0 ~—®NeodJ
5 - .-
) . ®- OCL
10k
i 5
3 2
o 1000
E 5
= 2
100
I 5
2
10
5
2
1
1000 2 5 10k 2 5100k 2 5 1M 2 5 10M 2 5

Number of Relationships

Figure 6. Run time comparison between Neo4j and OCL for the third
query, that checks if every person that has the value actor within the
primaryProfession list, has also a relationship to at least one movie with
the relationship attribute category containing this value.

—o— Neo4J
--@- OCL

Runtime (ms)

N
o O N

N

1 o«
10002 5 10k 2 5100k2 5 1M 2 510M 2 5
Number of Relationships

Figure 7. Run time comparison between Neo4j and OCL for the fourth
query, that checks if every person has a unique id.

5. Related Work

An approach for model verification is presented by Guerra
et al. (2012). This verification is performed by specify-
ing visual contracts and compiling them into QVT, which
is introduced by OMG (2007), to detect disconformities
of transformation results. In contrast to their work, the
presented approach is working directly on the database
level, using the corresponding query language to create
the verification.

Ko et al. (2013) present a verification concept using
property matching based transformation and graph com-
parison algorithms. To achieve this, the authors rely on
meta-information and compare associated properties in
the source as well as target model using similarity mea-
surements. Compared to the presented work, this verifica-
tion approach is based on property matching. In contrast,
the approach presented in this work does not use similar-
ity measurements, but compares the model properties.

Selim et al. (2013) describe the concept of verifying
graph-based model transformations based on properties.
The introduced property provers are used in the context
of the DSLTrans (c.f. Barroca et al. (2011)) transforma-
tion language to check the source and the target model
based on constraints. Hence, a constraint results in true or
false, depending on whether it is fulfilled by the respective
model or not. The idea of these constraints are comparable

33" European Modeling & Simulation Symposium, EMSS 2022

to the verification rules described in this work. The major
difference is the field of application, since the approach
presented in this work uses a graph database instead of
DSLTrans and for this reason benefits from query opti-
mizations of a database.

OCL from OMG (2006) is widely used for the verifica-
tion of models, for example defined using the Meta-Object
Facility (MOF) language as defined by OMG (2016). In this
context, Cariou et al. (2010) characterize a method using
OCL transformation contracts to verify the result’s correct-
ness of a transformation process. Burgueno et al. Burgueno
et al. (2013) present a tool for the specification and verifi-
cation of models. The second of the two mentioned publi-
cations is in turn based on OCL constraints. In addition to
that also Gogolla and Vallecillo (2011) describe a method for
transformation contracts using the constraint language
OCL. In contrast to the methods using OCL, the presented
approach in this work does not require an explicitly de-
fined model for the verification, because it only relies im-
plicitly on the database’s graph meta model.

6. Conclusion

This work contributes, a novel approach that enables ver-
ification on a graph-based structure. The approach uses
the graph database Neo4j and allows creating verification
rules using the Cypher querylanguage. Based on a running
example, where 3D polygons are transformed into 2D poly-
gons, the validity of the verification approach is examined
and allows answering RQ,: “How can model transforma-
tions be verified in graph databases?”. Furthermore, to also
address RQ,: “How does a graph database based verifica-
tion perform and scale?”, the performance of the presented
approach is evaluated based on the IMDD dataset in com-
parison to OCL. Both evaluations show that the approach
is capable of verifying models using Neo4j and Cypher.
The performance evaluation shows the advantages of a
graph based verification approach, especially for highly-
connected data sets with a high amount of entries, com-
pared to the classic approach using OCL. Additionally, the
functional as well as the performance evaluation provide
examples on how to define verification rules within the
presented approach.

In the future, it is planned to evaluate different rule
patterns to show best practices for using the presented
approach. Furthermore, a query API could be developed,
allowing to express the verification rules in a fluent and
type-safe way like the JPA Criteria API — specified in JSR
338 chapter 6 by DeMichiel and Jungmann (2017). This
would lead to an enhanced and even more powerful model
verification framework.

References

Atkinson, C. and Kuhne, T. (2003). Model-driven devel-
opment: a metamodeling foundation. IEEE Software,
20(5):36—41.

Barroca, B., Lucio, L., Amaral, V., Félix, R., and Sousa, V.
(2011). Dsltrans: A turing incomplete transformation
language. In Malloy, B., Staab, S., and van den Brand, M.,
editors, Software Language Engineering, pages 296—305,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Burgueno, L., Wimmer, M., Troya Castilla, J., and Val-
lecillo Moreno, A. (2013). Tractstool: Testing model
transformations based on contracts. In MODELS-JP 2013:
Invited Talks, Demonstration Session, Poster Session, and
ACM Student Research Competition co-located with the
16th Int. Conf. on Model Driven Engineering Languages and
Systems, p 76-80. CEUR-WS.

Cariou, E., Belloir, N., Barbier, F., and Djemam, N. (2010).
Ocl contracts for the verification of model transforma-
tions. Electronic Communications of the EASST, 24.

DeMichiel, L. and Jungmann, L. (2017). Sr 338:
Java™persistence api, version 2.2. https://jcp.org/
en/jsr/detail?id=338;accessed 10. May 2022.

DeMillo, R. A, Lipton, R.]., and Sayward, F. G. (1978). Hints
on test data selection: Help for the practicing program-
mer. Computer, 11(4):34—41.

Gogolla, M. and Vallecillo, A. (2011). Tractable model trans-
formation testing.

Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A.,
Retschitzegger, W., Schonbock, J., and Schwinger, W.
(2012). Automated verification of model transforma-
tions based on visual contracts. Automated Software
Engineering, 20(1):5—46.

Guerra, E., Sanchez Cuadrado, J., and de Lara, J. (2019).
Towards effective mutation testing for atl. In 2019
ACM/IEEE 22nd International Conference on Model Driven
Engineering Languages and Systems (MODELS), pages
78—88.

IMDb.com, Inc (2022). Imdb datasets. https://www.imdb.
com/interfaces/. (Accessed on 12/07/2022).

Ireland, C., Bowers, D., Newton, M., and Waugh, K. (2009).
A classification of object-relational impedance mis-
match. In 2009 First International Confernce on Advances
in Databases, Knowledge, and Data Applications, pages
36—43. IEEE.

Ko, J.-W., Chung, K.-Y., and Han, J.-S. (2013). Model trans-
formation verification using similarity and graph com-
parison algorithm. Multimedia Tools and Applications,
74(20):8907—8920.

Lano, K., Kolahdouz-Rahimi, S., and Clark, T. (2012a).
Comparing verification techniques for model transfor-
mations. In Proceedings of the Workshop on Model-Driven
Engineering, Verification and Validation, page 23—28. As-
sociation for Computing Machinery:.

Lano, K., Kolahdouz-Rahimi, S., and Clark, T. (2012b). Ver-
ification of model transformations. Dept. of Informatics,
King’s College London.

Mottu, J.-M., Baudry, B., and Le Traon, Y. (2006). Muta-
tion analysis testing for model transformations. In Eu-
ropean Conference on Model Driven Architecture (ECMDA
06), pages 376—390.

Neo4j, Inc. (2021). Neo4j apoc library - developer guides.

https://jcp.org/en/jsr/detail?id=338
https://jcp.org/en/jsr/detail?id=338
https://www.imdb.com/interfaces/
https://www.imdb.com/interfaces/

https://neo4j.com/developer/neodj-apoc/. (Accessed
on 07/12/2022).

OMBG (2006). Object constraint language (ocl) specifica-
tion, version 2.0. https://www.omg.org/spec/0CL/2.0/;
accessed 10. May 2022.

OMBG (2007). Meta object facility (mof) 2.0 query [view
| transformation specification. https://www.omg.org/
cgi-bin/doc?ptc/2007-07-07; accessed 10. May 2022.

OMBG (2016). Mof meta object facility. https://www.ong.
org/spec/MOF/;accessed 10. May 2022.

Praschl et al.

Pointner, A. and Praschl, C. (2020). Fhooeaist/neo4j-imdb:
v1.0. https://zenodo.org/record/4030726.

Praschl, C. and Pointner, A. (2021). Fhooeaist/imdb-ocl-
verification: v1.0.0. https://zenodo.org/record/5705169.

Selim, G., Lucio, L., Cordy, J. R., and Dingel, J. (2013). Sym-
bolic model transformation property prover for dsltrans.
Technical report, Technical Report 2013-616, Queen’s
University.

Sunitha, E. and Samuel, P. (2019). Automatic code genera-
tion from uml state chart diagrams. IEEE Access, 7.

https://neo4j.com/developer/neo4j-apoc/
https://www.omg.org/spec/OCL/2.0/
https://www.omg.org/cgi-bin/doc?ptc/2007-07-07
https://www.omg.org/cgi-bin/doc?ptc/2007-07-07
https://www.omg.org/spec/MOF/
https://www.omg.org/spec/MOF/

	Introduction
	Approach
	Verification framework
	User-defined APOC procedures

	Evaluation
	Functional Evaluation
	Performance Evaluation

	Results
	Functional Results
	Performance Results

	Related Work
	Conclusion

