Towards Modelling Namespaces in Graph Databases

  • Andreas Pointner ,
  • , Christoph Praschl,
  • Oliver Krauss
  • a,b,c  University of Applied Sciences Upper Austria, Hagenberg i. M., Austria
Cite as
Pointner A., Praschl C., and Krauss O. (2022).,Towards Modelling Namespaces in Graph Databases. Proceedings of the 34th European Modeling & Simulation Symposium (EMSS 2022). , 021 . DOI: https://doi.org/10.46354/i3m.2022.emss.021

Abstract

We present a novel approach to store data with different contexts inside a property graph model. We introduce namespaces, similar to namespaces in XML, and extend nodes and relationships with labels to assign them to a specific context, i.e. namespace. Individual  properties of a node or relationship can also be put in a namespace. This work is specifically targeting the utilization in graph databases,  with a reference implementation provided via the Neo4j database. In addition to the theoretical approach, an object to graph mapper for the programming language Java is implemented and used to evaluate the approach. As an evaluation example, a university organization is used, which is split into two domains. The experiments show, that information of different domains can be stored within the same model using namespaces. Thus, it is possible to reuse shared information over multiple contexts, which reduces data duplication in the graph database, as otherwise multiple nodes would be required.

References

  1. Aasman, J. (2006). Allegro graph: Rdf triple database. Cidade: Oakland Franz Incorporated, 17.
  2. Angles, R. (2012). A comparison of current graph database models. In 2012 IEEE 28th International Conference on Data Engineering Workshops, pages 171–177.
  3. Anikin, D., Borisenko, O., and Nedumov, Y. (2019). Labeled property graphs: Sql or nosql? In 2019 Ivannikov
    Memorial Workshop (IVMEM), pages 7–13. IEEE. ArangoDB (2020). Views | HTTP | ArangoDB Documentation. https://www.arangodb.com/docs/stable/http/
    views.html; accessed 10. May 2022.
  4. Bender, E. A. and Williamson, S. G. (2010). Lists, Decisions and Graphs. S. Gill Williamson
  5. Boyd, M. and McBrien, P. (2005). Comparing and transforming between data models via an intermediate hypergraph data model. In Spaccapietra, S., editor, Journal on Data Semantics IV, pages 69–109, Berlin, Heidelberg. Springer Berlin Heidelberg.
  6. Bray, T., Hollander, D., Layman, A., and Tobin, R. (1999). Namespaces in xml. World Wide Web Consortium Recommendation REC-xml-names-19990114. http://www. w3. org/TR/1999/REC-xml-names-19990114.
  7. Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and Yergeau, F. (1997). Extensible markup language (xml). World Wide Web Journal, 2(4):27–66.
  8. Bretto, A. (2013). Hypergraph theory. An introduction. Mathematical Engineering. Cham: Springer.
  9. Buneman, P., Davidson, S., Fernandez, M., and Suciu, D. (1997). Adding structure to unstructured data. In Afrati, F. and Kolaitis, P., editors, Database Theory — ICDT ’97, pages 336–350, Berlin, Heidelberg. Springer Berlin Heidelberg.
  10. Chen, P. P. S. (1976). The entity relationship model toward a unified view of data. ACM transactions on database systems (TODS), 1(1):9–36.
  11. Mirjalili, S., Jain, S. S., & Dodd, M. (2017). Interface-capturing methods for two-phase flows: Anoverview and recent developme de Leeuw, D., Bryant, M., Frankl, M., Nikolova, I., and Alexiev, V. (2018). Digital methods in holocaust studies: The european holocaust research infrastructure. In 2018 IEEE 14th International Conference on e-Science (e-Science), pages 58–66. nts. Center forTurbulence Research Annual Research Briefs,2017(117-135), 13.
  12. Dietze, F., Karoff, J., Calero Valdez, A., Ziefle, M., Greven, C., and Schroeder, U. (2016). An open-source objectgraph-mapping framework for neo4j and scala: Renesca. In International Conference on Availability, Reliability, and Security, pages 204–218. Springer. 
  13. Fernandes, D. and Bernardino, J. (2018). Graph databases comparison: Allegrograph, arangodb, infinitegraph, neo4j, and orientdb. In Proceedings of the 7th International Conference on Data Science, Technology and Applications, DATA 2018, page 373–380, Setubal, PRT. SCITEPRESS.
  14. for Standardization, I. O. (2016). Information technology database languages sql part 2: Foundation (sql foundation). Technical Report ISO/IEC 9075-2:2016(en), International Organization for Standardization.
  15. Hartig, O. and Pérez, J. (2018). Semantics and complexity  of GraphQL. In Proceedings of the 2018 World Wide Web Conference on World Wide Web - WWW '18. ACM Press. HL7 International (2019). Profiling - FHIR v4.0.1. https: //www.hl7.org/fhir/profiling.html; accessed 10. May 2022.
  16. Klyne, G. and Carroll, J. J. (2004). Resource description framework (rdf): Concepts and abstract syntax. W3C Recommendation. http://www.w3.org/TR/2004/ REC-rdf-concepts-20040210/; accessed 10. May 2022.
  17. McGuinness, D. L., Van Harmelen, F., et al. (2004). Owl web ontology language overview. W3C recommendation, 10(10):2004.
  18. Mennicke, S. (2019). Modal schema graphs for graph databases. In Laender, A. H. F., Pernici, B., Lim, E.-P., and de Oliveira, J. P. M., editors, Conceptual Modeling, pages 498–512, Cham. Springer Intern. Publishing.
  19. Needham, M. (2019). Graph algorithms : practical examples in Apache Spark and Neo4j. O’Reilly, Beijing
  20. Neo4j (2020a). Cypher Query Language. https://neo4j. com/developer/cypher/; accessed 10. May 2022.
  21. Neo4j (2020b). What is a Graph Database? https: //neo4j.com/developer/graph-database/; accessed 10. May 2022.
  22. Neo4j (2022). Neo4j driver. https://neo4j.com/docs/api/ java-driver/current/org/neo4j/driver/Driver.html; accessed 10. May 2022.
  23. O’Neil, E. J. (2008). Object/relational mapping 2008: Hibernate and the entity data model (edm). In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD ’08, pages 1351–1356, New York, NY, USA. Association for Computing Machinery.
  24. OrientDB (2020). Create view - orientdb manual. http:// orientdb.com/docs/last/sql/SQL-Create-View.html; accessed 10. May 2022.
  25. Pointner, A., Praschl, C., and Krauss, O. (2021).
    Fhooeaist/aist-neo4j. Pru d’hommeaux, E. and Seaborne, A. (2008). SPARQL Query Language for RDF. W3C Recommendation. http: //www.w3.org/TR/rdf-sparql-query/; accessed 10. May 2022.
  26. Robinson, I. (2015). Graph databases : new opportunities for connected data. O’Reilly, Sebastopol, CA.
  27. Ross, K. A., Srivastava, D., and Sudarshan, S. (1996). Materialized view maintenance and integrity constraint
    checking: Trading space for time. SIGMOD Rec., 25(2):447 to 458.
  28. Teorey, T. J., Yang, D., and Fry, J. P. (1986). A logical design methodology for relational databases using the extended entity-relationship model. ACM Comput. Surv., 18(2):197–222.
  29. van der Lans, R. F. (2010). Infinitegraph: Extending business, social and government intelligence with graph
    analytics. Technical report, Technical report.
  30. Zhuge, Y. and Garcia-Molina, H. (1998). Graph structured views and their incremental maintenance. In Proceedings 14th International Conference on Data Engineering, pages 116–125. IEEE.