
© 2021 The Authors. This article is an open access article distributed under the terms and conditions of the CreativeCommons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Towards Modelling Namespaces in Graph Databases
Andreas Pointner1,*, Christoph Praschl1 and Oliver Krauss1
1University of Applied Sciences Upper Austria, Hagenberg i. M., Austria
*Corresponding author. Email address: andreas.pointner@fh-hagenberg.at

Abstract
We present a novel approach to store data with different contexts inside a property graph model. We introduce namespaces, similar tonamespaces in XML, and extend nodes and relationships with labels to assign them to a specific context, i.e. namespace. Individualproperties of a node or relationship can also be put in a namespace. This work is specifically targeting the utilization in graph databases,with a reference implementation provided via the Neo4j database. In addition to the theoretical approach, an object to graph mapper forthe programming language Java is implemented and used to evaluate the approach. As an evaluation example, a universityorganization is used, which is split into two domains. The experiments show, that information of different domains can be storedwithin the same model using namespaces. Thus, it is possible to reuse shared information over multiple contexts, which reduces dataduplication in the graph database, as otherwise multiple nodes would be required.
Keywords: Model Extensions, Namespaces, Graph Database, Neo4j

1. Introduction

In this work, a combination of graph representations withthe concept of domains and extensions is introduced, al-lowing to put (sub)graphs into specific contexts and pro-viding views and query options on nodes and relationshipsin graphs. This work is specifically targeting the utiliza-tion in graph databases to enable these features and con-cepts in them.Modern graph databases and graph APIs are based ondata models defining nodes and relationships (or edges),consisting of properties with specific datatypes as dis-cussed by Robinson (2015); Needham (2019); Hartig andPérez (2018); Fernandes and Bernardino (2018). Somegraph databases, like the Ontotext GraphDB introducedby de Leeuw et al. (2018), allow more rigorous modellingutilizing the XML Resource Description Framework (RDF)as defined in Klyne and Carroll (2004) and the SPARQLProtocol and RDF Query Language (SPARQL) as shown byPrud’hommeaux and Seaborne (2008). RDF enables rig-orous modelling in graph databases by introducing XMLnamespaces and high level domain modelling. SPARQL

enables querying by the namespace prefix defined in RDF.Although, these technologies allow using namespaces toput data into specific contexts, graph databases based on itoften do not support putting nodes/relationships into mul-tiple namespaces, but only one and for this reason limitthe modelling possibilities.This work introduces a method allowing to include datamodels in any graph database / modelling language withsupport for namespaces, such as RDF or other modellingoptions, thus enabling polymorphous nodes and relation-ships, as well as extensibility. Examples of where thisapproach can be useful are in the data mining domain,where these concepts allow enriching a base model in sep-arate processing steps, or using views of the same datamodel for different purposes. Another application domainis the storage of complex data models in the health caredomain, such as the Health Level 7 (HL7) Fast HealthcareInteroperability Resources (FHIR) standard as defined inHL7 International (2019).

1

2724-0029 © 2022 The Authors.doi: 10.46354/i3m.2022.emss.021

Proceedings of the 33rd European Modeling & Simulation Symposium (EMSS), 02118th International Multidisciplinary Modeling & Simulation Multiconference

https://creativecommons.org/licenses/by-nc-nd/4.0/.

2 | 33rd European Modeling & Simulation Symposium, EMSS 2022

The primary contributions presented in this work are:
• A concept to enrich a graph with namespaces, whichallows grouping nodes and relationships into specificdomains and extensions.• A querying concept for the domain model.• A proof of concept in the Neo4J graph database and itsquery language Cypher.• A polymorphic object to graph mapping for the pre-sented concept.
2. Background

An approach of namespaces in graph databases is pre-sented based on a reference implementation using thegraph database system (GDBS) Neo4j (2020b) and itsquery language Cypher, which is defined in Neo4j (2020a).Neo4j is a GDBS based on the labeled property graph datamodel defined by Anikin et al. (2019) and is implementedusing the programming language Java. In this model, agraph is represented using a list of nodes and a list of rela-tionships. Nodes are in turn the information entity savedin the database and take in a comparable role to relationsin classic relational databases. Every node consists of anID, its properties in the form of a list of key-value pairsand a list of labels. Labels are an additional meta informa-tion in the form of a set of strings, that can for examplebe used to represent a node’s types. Relationships connecttwo nodes in a directed way and are semantically enriched.This means that Neo4j stores additional information forevery relationship in the form of a label for its name/typeand a list of key-value pairs to enhance the expressivenessof the relationship.Cypher is used to manipulate the graph by inserting,deleting or updating nodes/relationships and by travers-ing the graph structure in a declarative way (comparableto SQL). Cypher also allows defining conditions based onthe nodes’ and relationships’ properties and labels for thetraversal of the graph.
3. Approach

In general, a graph G consists of a set of nodes V and a setof edges E, which results in an ordered pair (V, E). Thus,a graph can be defined as G = (V, E). Furthermore, thecondition that an edge E must have a source node and atarget node applies. Thereby, the two functions s, t : E → Vcan be derived from it, as Bender and Williamson (2010)showed.In this work, the definition of a namespace N is added,where every n ∈ N is a tuple n = (name, pred) | pred ∈N ∨ pred ∈ {ϵ} containing the current namespace’s namename and its parent namespace pred – respectively theempty (default) namespace if pred ∈ {ϵ} applies. Thisnamespace definition leads to a namespace hierarchy, withthe default namespace at the very beginning.Based on this, the node definition is extended, so V

is a set of nodes, where every node v ∈ V is a tuple v =(I, Nv, A) | Nv ⊆ N. Such a tuple consists of an ID I, a setof namespaces Nv and a set of attributes A (properties)where every a ∈ A is again a tuple a = (n, val, type) | n ∈ Nvthat defines the origin namespace n of the attribute, itsactual value val and its data type type. With this definition,the property graph model is extended, so that every nodeis part of one or multiple namespaces. Finally, edges areassigned to namespaces as well, by adding a function ns :E → N, that returns the namespaces to which the edge isassigned to.
Nodes in the namespace x define the subgraph G′ =(V′, E′) |∀(I′, N′v, A′) ∈ V′ ∧ contains(x, N′v) ∧ ∀e ∈E′ contains(x, ns(e)) where contains is defined as followed:contains(x, N) ⇒ N = {ϵ} ∨ x ∈ N ∨ (x = (namex, predx) ∧predx ̸= ϵ∧ contains(predx, N)). This allows to define that anode is part of the subgraph G′ if it is in the given names-pace x or in any parent namespace along the hierarchy. Theapproach of subgraphs allows to query the model for dif-ferent contexts by selecting nodes, edges and fields insidethese elements only for specific namespaces.

4. Evaluation

A model of a university organization is used to evaluate theconcept of namespaces in graph databases. The domainmodel is shown using the Enhanced Entity Relationship(EER) model as defined by Teorey et al. (1986) with ChenNotation as shown in Chen (1976) in Figure 1. EER is avisual notation for domain models and uses rectangles todescribe entities (domain classes), attributes via ellipses,rhombus for relationships between entities and hexagonsfor the concept of generalization/specialization (inheri-tance).
The evaluation model is mainly based on persons indifferent roles. Every person is described by the main at-tributes ID, FirstName and LastName. In the example, aperson can be a Student and/or an Employee, while em-ployees are in turn separated into Researchers, Tutorsor Lecturers. All of these roles consist of additional in-formation like attributes as the Semester of a student orthe AreaOfExpertise of a researcher, but also describeadditional relationships as teaches between the entities

Student, Lecturer and Lecture. The different componentsof the model can be separated into two organizationalunits: (I) Research and Development (R&D), as well as(II) Study Operation. Those units can be seen as differ-ent namespaces, with Study Operation as base namespaceand R&D as extension. Those namespaces are shown withdashed bordered areas in Figure 1. In addition, the modelhighly depends on polymorphism, since e.g. a person maybe a student and a tutor in the system at the same time.This information can be in turn represented via names-paces per role of a person and allows combining the person,the student and the tutor information in one single node inthe database and like that allows minimizing storage space.With the presented concept it is still possible to extract

Pointner et al. | 3

Person

ID FirstName LastName

isA

Employee N

Student

isA

Researcher
1

Lecturer

1

Tutor teaches
M

Lecture

M

N

supports

Matriculation
number

Name

Semester

Title

Salary

AreaOfExpertise EmploymentPeriod

Start End

Project

ID

Name

N

M

worksIn

Reserach and
Development

Study
Operation

ID

Figure 1. Enhanced Entity Relationship model showing different components of a university organization that is separated into two namespaces “Researchand Development” and “Study Operation”. Due to the support of polymorphism, a student may also be a tutor, or a lecturer may also work as a researcher.

only the required parts, when e.g. only the R&D relatedinformation or all tutors using the respective namespaceinformation is desired.The concept is tested based on a Java based objectto graph mapper (OGM) implementation, that supportsnamespaces within a Neo4j graph database and with thisto persist the presented university model with all its se-mantic information. This OGM prototype is open sourcedby the authors Pointner et al. (2021) and publicly availableon GitHub as well as on Maven Central. The implementa-tion supports the concept of namespaces by utilizing labelsin Neo4j’s property graph model. This means, that a nodeor an edge can have multiple labels, that represent the var-ious types which they belong to. In addition, the keys ofeach property within a node or edge are prefixed with thename of the namespace, allowing it to be mapped correctly.This also allows having properties of the same name withdifferent purposes within the same element, but in a dif-ferent namespace, and like this avoids clashing extensions.By default, the implementation maps the namespace tothe fully qualified class name, which consists of the pack-age name and the class name itself. This configurationcan be overwritten by specifying custom annotations. Theimplementation uses Neo4j (2022) Java driver and allowsquerying the nodes and edges using Cypher. Using Java’sreflection mechanism, the proposed implementation al-lows creating the correct objects at runtime and mappingthe properties accordingly. To ensure that data is not lostwhen writing the object back to the database, it is requiredto have the value of all fields in all namespaces. To do so, allinformation that is present for a single element is storedin hidden fields in the object class, created via Java reflec-

tion. This only applies to properties and not to a node’srelationships, which are only loaded if they are within thequery results. Java does not support polymorphism. Forthis reason, it is not possible to have the same object indifferent namespaces. Because of this, multiple objectshave to be used to access the specific information stored inthe hidden fields. This requires a unique key to re-identifyobjects within different namespaces.In order to be able to insert the nodes into the database,two parts are required within the object to graph mappingprocess: (1) the domain model in Java and (2) a repository,allowing to access the database. Both of these have beencreated for the whole domain model in order to test thedefined scenario. A sample domain class is shown in List-ing 1 and the creation of the corresponding repository isdisplayed in Listing 2.
Listing 1. Defining the person domain class and define therelevant annotation in order to be able to use it inside theobject to graph mapper with namespaces.
package s ;@NodeEntity(label = "person")
public class Person {@Id
private long id ;
private String firstName ;
private String lastName ;/* G e t t e r and s e t t e r omitted */}

4 | 33rd European Modeling & Simulation Symposium, EMSS 2022

s.Person:s.Student:s.Employee:s.Tutor

s.person:id = 11
s.person:FirstName = Max
s.person:LastName = Mustermann

s.student:MatrNr = 012345

s.tutor:emplPeriod.start = 01.10.2021
s.tutor:emplPeriod.end = 30.06.2022

s.employee:salary = 123

rd.worksIn

s.Person:s.Employee:rd.Researcher:s.Lecturer

s.person:id = 1
s.person:FirstName = Jane
s.person:LastName = Doe

s.lecturer:title = MSc

s.employee:salary = 123

rd.researcher:AreaOfExpertise = Model Transformation

rd.Project

rd.project:id = 101
rd.project:name = Namespace in Neo4j

s.Lecture

s.lecture:id = 1001
s.lecure:name = Datenbanken 2

s.Lecture

s.lecture:id = 1002
s.lecutre:name = Datenbanken 3rd.worksIn

s.Person:s.Employee:rd.Researcher:s.Lecturer

s.person:id = 2
s.person:FirstName = John
s.person:LastName = Doe

s.lecturer:title = PhD

rd.researcher:AreaOfExpertise = Generic Programming

s.employee:salary = 123

s.Person:s.Student

s.person:id = 11
s.person:FirstName = Erika
s.person:LastName = Mustermann

s.student:MatrNr = 6789

s.supports

s.teaches

Figure 2. Graph representing the results of the evaluation example, consisting of vertices and edges with namespaces inside the Neo4j database. Thenamespaces are represented in the header of the object with the labels using the abbreviations “rd” for “Research and Development” and “s” for “StudyOperation”. In addition, every field has the namespace in prefix notation. The horizontal dividers are also indicating the namespaces.

Listing 2. Creates a new Neo4j repository for the Personclass, which allows basic create, update and query opera-tions on the database nodes.
/* Creation o f t r a n s a c t i o n manager omitted */TransactionManager tm = . . . ;Neo4jRepository<Person , Long> persRepo = new

↪→ NamespaceAwareReflectiveNeo4JNode
↪→ RepositoryImpl (tm, Person . class) ;

Using the required repository objects, allows insertinga sample graph representing the domain model shownin Figure 1. This insert process results in an object graphthat is in turn shown in Figure 2. Since Neo4j does notsupport hypergraphs it is necessary to create an interme-diate node between ternary relationship, like “teaches”and “supports”.
Next to inserting the data into the database, the OGMimplementation enables to load different perspectives ofthe graphs using namespaces. As an example, a sub-graph for the namespace “Study Operation” can be se-lected based on its entities Lecture, Student and Lecturer us-ing the condition that the Lecturer with the name John Doemust be contained. To do so, the results are limited basedon the main namespace “Study Operation” and the men-tioned sub-namespaces Lecture, Student and Lecturer re-spectively. This query results in a Java object graph, whichis visualized in Figure 3. This graph doesn’t contain any ex-plicit namespace information, as they are implicitly givenvia the Java domain class hierarchy and its packages.
In a second example, the namespace “Research andDevelopment” is selected, and the entities are limited toProject as well as Researcher. Again, the condition that theResearcher with the name John Doe must be contained isused, other than that no further restrictions are applied.This results in the Java object graph show in Figure 4.

Student

id = 11
firstName = Max
lastName = Mustermann
matrNr = 012345

Lecture

id = 1002
name = Databases 3Lecturer

id = 2
firstName = John
lastName = Doe
title = PhD
salary = 123

teaches

Figure 3. A subgraph when selecting the Lecturer John Doe with the LectureDatabase 3 and the Student Max Mustermann represented as Java objects.

w
or

ks
In

Project

id = 101
name = NS in Neo4jw

or
ks

In

Researcher

id = 2
firstName = John
lastName = Doe
salary = 123
areaOfExpertise = GP

Researcher

id = 1
firstName = Jane
lastName = Doe
salary = 123
areaOfExpertise = MT

Figure 4. A subgraph when selecting the Researcher John Doe with all itsdependencies inside the “Research and Development” represented as Javaobjects.

5. Related Work

The Extensible Markup Language (XML) as definedby Bray et al. (1997) provides with Bray et al. (1999)a namespace mechanisms, to avoid clashing elementnames between different documents or even withinthe same document and to clearly distinguish differentelement types. Namespaces are either defined via the
xmlns attribute of a given element or via a prefix of theelement name. Using such namespaces one is able to usepolymorphism for an element, since every attribute isclearly assignable to its source class based on the givennamespace and like this it is also possible to just retrievethe information that is associated with a given namespace.Similarly to this, the presented approach also uses a prefixto clearly identify objects and attributes.

Pointner et al. | 5

The Resource Description Framework (RDF) as definedby Klyne and Carroll (2004) is an XML based informationdefinition language. The language’s basis are so-calledsemantic triples, that consists of a subject, a predicate andan object, where the subject is somehow related with theobject via the predicate. Those semantic triples form adirected graph - the so called RDF model. Building on RDF,the Web Ontology Language (OWL) standard as definedby McGuinness et al. (2004) is used to describe ontolo-gies. This is done by defining class hierarchies and objectinstances, as well as properties, that are added to a classusing semantic triples. Due to this mechanism it is possi-ble to define different properties along the class hierarchyand for this restricting the scope, in which attributes areavailable. Since RDF and in turn OWL are XML based, it isalso possible to use namespaces for classes. This usage ofnamespaces in a graph based context and the limitationof properties to certain classes of a given namespace iscomparable to the presented approach, that takes up thisconcept and brings it onto the level of graph databases.
Object/relational mapping (ORM) as defined by O’Neil(2008) has become an important concept in the field ofobject-orientated systems and represents an interfacebetween object-orientated programming and relationaldatabases. It is used to simplify the process of persistingand querying objects to/from a database, and with thisto distribute information. Related to this, object to graphmappers (OGM) as shown in Dietze et al. (2016) are theequivalent for graph databases. The presented approach istightly connected to OGM, since the presented approachuses this mechanism to map objects with their names-paces into graph databases.
In addition to OWL, there is also the SPARQL Proto-col And RDF Query Language (SPARQL) as defined byPrud’hommeaux and Seaborne (2008) in the context ofRDF. SPARQL is a query language used to retrieve and ma-nipulate data stored as RDF files. Since OWL is based onRDF, SPARQL can be used to query ontologies and for thesequeries can filter information based on XML namespaces.Due to the usage of an ORM system, this mechanism ofextracting certain data based on a give namespace is alsopossible with the presented approach.
Zhuge and Garcia-Molina (1998) present the concept ofviews for graph databases. This concept allows to dynam-ically provide certain excerpts of a database using a pre-defined query. Alternatively, so called Materialized Viewsas defined by Ross et al. (1996) extend the classic viewconcept by persisting the query result for later reuse to im-prove the performance. Consequently, views can be usedas a mechanism for namespaces, where only associatedattributes of a relation are returned and are for this compa-rable to the presented approach. Views require a manualselection of the attributes that belong to the namespace,while, in contrast our approach is able to automaticallyfilter the required information based on the introducednamespace. Although the concept of views is widely usedin the field of relational databases (since it is part of SQL as

shown in for Standardization (2016)), it is not that com-mon for graph databases. While e.g. ArangoDB defined byArangoDB (2020) or OrientDB defined by OrientDB (2020)provide the possibility of views, the concept is not part ofsystems like Neo4j as defined by Robinson (2015), Infinite-Graph as defined by van der Lans (2010) or AllegroGraphas defined by Aasman (2006). In our work, an approachfor namespaces in graph databases, but the concept itselfcan be also applied on different database systems.Mennicke (2019) extends the Schema Graph as definedby Buneman et al. (1997) data model by concepts like keyproperties and modal specifications. In addition to that,Boyd and McBrien (2005), as well as HyperGraphDB asdefined by Angles (2012) extend the mathematical modelof Hypergraphs as defined in Bretto (2013) by constraintconstructs, respectively by edges between more than twonodes. Comparable to these extensions, our work alsointroduces the concept of namespaces as extension to theproperty graph model used in graph databases like Neo4j.Furthermore, our namespace approach allows extendingany model based on the property graph model by certainnamespace-based groupings of information.
6. Conclusion
An approach is presented, on how to set (sub)graphs intoa specific context, and the possibility to provide differ-ent views and query mechanisms. Namespaces are usedin order to be able to extend domain objects for multipledifferent contexts.In order to prove the correctness of our theoretical ap-proach, a Java object graph mapper for the graph databaseNeo4j has been implemented and proved the concept withstoring example objects of a university organization insidethe database. A sub-graph is selected from the databaseand mapped that to the desired classes inside the Javamodel. With that, it is shown that the theoretical approachof using namespaces to store domain objects of differentcontext within the same database works as desired. While,only the application in Java is shown, the approach canalso be used in other programming languages.For the future, we plan to evaluate our approach on acomplex data model, namely the HL7 FHIR standard. Theuse-case in that scenario is based on a real world require-ment. Each country, and often organizations, all have theirown specifications based on HL7 FHIR. This is necessarybecause health care systems around the world have dif-ferent requirements that have to be satisfied within thesystems. With the presented approach, the shared datacould be reused, and the models would be exchangeablebetween different systems.In addition, a comparison of the presented object graphmapping approach to existing Neo4j object graph mapperslike Spring Data Neo4j is planned. Furthermore, an eval-uation of how the approach scales and performs in com-parison to existing state-of-the-art frameworks shouldbe carried out.

6 | 33rd European Modeling & Simulation Symposium, EMSS 2022

References
Aasman, J. (2006). Allegro graph: Rdf triple database.Cidade: Oakland Franz Incorporated, 17.Angles, R. (2012). A comparison of current graph databasemodels. In 2012 IEEE 28th International Conference onData Engineering Workshops, pages 171–177.Anikin, D., Borisenko, O., and Nedumov, Y. (2019). La-beled property graphs: Sql or nosql? In 2019 IvannikovMemorial Workshop (IVMEM), pages 7–13. IEEE.ArangoDB (2020). Views | HTTP | ArangoDB Documen-tation. https://www.arangodb.com/docs/stable/http/

views.html; accessed 10. May 2022.Bender, E. A. and Williamson, S. G. (2010). Lists, Decisionsand Graphs. S. Gill Williamson.Boyd, M. and McBrien, P. (2005). Comparing and trans-forming between data models via an intermediate hy-pergraph data model. In Spaccapietra, S., editor, Journalon Data Semantics IV, pages 69–109, Berlin, Heidelberg.Springer Berlin Heidelberg.Bray, T., Hollander, D., Layman, A., and Tobin, R. (1999).Namespaces in xml. World Wide Web Consortium Recom-mendation REC-xml-names-19990114. http://www. w3.org/TR/1999/REC-xml-names-19990114.Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., andYergeau, F. (1997). Extensible markup language (xml).World Wide Web Journal, 2(4):27–66.Bretto, A. (2013). Hypergraph theory. An introduction.Mathematical Engineering. Cham: Springer.Buneman, P., Davidson, S., Fernandez, M., and Suciu, D.(1997). Adding structure to unstructured data. In Afrati,F. and Kolaitis, P., editors, Database Theory — ICDT ’97,pages 336–350, Berlin, Heidelberg. Springer Berlin Hei-delberg.Chen, P. P. S. (1976). The entity relationship model towarda unified view of data. ACM transactions on databasesystems (TODS), 1(1):9–36.de Leeuw, D., Bryant, M., Frankl, M., Nikolova, I., andAlexiev, V. (2018). Digital methods in holocaust stud-ies: The european holocaust research infrastructure.In 2018 IEEE 14th International Conference on e-Science(e-Science), pages 58–66.Dietze, F., Karoff, J., Calero Valdez, A., Ziefle, M., Greven,C., and Schroeder, U. (2016). An open-source object-graph-mapping framework for neo4j and scala: Re-nesca. In International Conference on Availability, Re-liability, and Security, pages 204–218. Springer.Fernandes, D. and Bernardino, J. (2018). Graph databasescomparison: Allegrograph, arangodb, infinitegraph,neo4j, and orientdb. In Proceedings of the 7th Interna-tional Conference on Data Science, Technology and Ap-plications, DATA 2018, page 373–380, Setubal, PRT.SCITEPRESS.for Standardization, I. O. (2016). Information technologydatabase languages sql part 2: Foundation (sql founda-tion). Technical Report ISO/IEC 9075-2:2016(en), Inter-national Organization for Standardization.Hartig, O. and Pérez, J. (2018). Semantics and complexity

of GraphQL. In Proceedings of the 2018 World Wide WebConference on World Wide Web - WWW '18. ACM Press.HL7 International (2019). Profiling - FHIR v4.0.1. https:
//www.hl7.org/fhir/profiling.html; accessed 10. May2022.Klyne, G. and Carroll, J. J. (2004). Resource descrip-tion framework (rdf): Concepts and abstract syntax.W3C Recommendation. http://www.w3.org/TR/2004/
REC-rdf-concepts-20040210/; accessed 10. May 2022.McGuinness, D. L., Van Harmelen, F., et al. (2004). Owlweb ontology language overview. W3C recommendation,10(10):2004.Mennicke, S. (2019). Modal schema graphs for graphdatabases. In Laender, A. H. F., Pernici, B., Lim, E.-P.,and de Oliveira, J. P. M., editors, Conceptual Modeling,pages 498–512, Cham. Springer Intern. Publishing.Needham, M. (2019). Graph algorithms : practical examplesin Apache Spark and Neo4j. O’Reilly, Beijing.Neo4j (2020a). Cypher Query Language. https://neo4j.
com/developer/cypher/; accessed 10. May 2022.Neo4j (2020b). What is a Graph Database? https:
//neo4j.com/developer/graph-database/; accessed 10.May 2022.Neo4j (2022). Neo4j driver. https://neo4j.com/docs/api/
java-driver/current/org/neo4j/driver/Driver.html;accessed 10. May 2022.O’Neil, E. J. (2008). Object/relational mapping 2008: Hi-bernate and the entity data model (edm). In Proceed-ings of the 2008 ACM SIGMOD International Conferenceon Management of Data, SIGMOD ’08, pages 1351–1356,New York, NY, USA. Association for Computing Machin-ery.OrientDB (2020). Create view - orientdb manual. http://
orientdb.com/docs/last/sql/SQL-Create-View.html;accessed 10. May 2022.Pointner, A., Praschl, C., and Krauss, O. (2021).Fhooeaist/aist-neo4j.Prud’hommeaux, E. and Seaborne, A. (2008). SPARQLQuery Language for RDF. W3C Recommendation. http:
//www.w3.org/TR/rdf-sparql-query/; accessed 10. May2022.Robinson, I. (2015). Graph databases : new opportunities forconnected data. O’Reilly, Sebastopol, CA.Ross, K. A., Srivastava, D., and Sudarshan, S. (1996). Ma-terialized view maintenance and integrity constraintchecking: Trading space for time. SIGMOD Rec.,25(2):447 to 458.Teorey, T. J., Yang, D., and Fry, J. P. (1986). A logical de-sign methodology for relational databases using the ex-tended entity-relationship model. ACM Comput. Surv.,18(2):197–222.van der Lans, R. F. (2010). Infinitegraph: Extending busi-ness, social and government intelligence with graphanalytics. Technical report, Technical report.Zhuge, Y. and Garcia-Molina, H. (1998). Graph structuredviews and their incremental maintenance. In Proceed-ings 14th International Conference on Data Engineering,pages 116–125. IEEE.

https://www.arangodb.com/docs/stable/http/views.html
https://www.arangodb.com/docs/stable/http/views.html
https://www.hl7.org/fhir/profiling.html
https://www.hl7.org/fhir/profiling.html
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
https://neo4j.com/developer/cypher/
https://neo4j.com/developer/cypher/
https://neo4j.com/developer/graph-database/
https://neo4j.com/developer/graph-database/
https://neo4j.com/docs/api/java-driver/current/org/neo4j/driver/Driver.html
https://neo4j.com/docs/api/java-driver/current/org/neo4j/driver/Driver.html
http://orientdb.com/docs/last/sql/SQL-Create-View.html
http://orientdb.com/docs/last/sql/SQL-Create-View.html
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

	Introduction
	Background
	Approach
	Evaluation
	Related Work
	Conclusion

