
© 2021 The Authors. This article is an open access article distributed under the terms and conditions of the CreativeCommons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Distributed Classification - A Scalable Approach to Semi
Supervised Machine Learning
Rainer Meindl1, Simone Sandler1, Elisabeth Mayrhuber1, * and Oliver Krauss1
1Research Group Advanced Information Systems and Technology, Research and Development Department, University ofApplied Sciences Upper Austria
*Corresponding author. Email address: elisabeth.mayrhuber@fh-hagenberg.at

Abstract
Fitting real world data into a model for classification, is a challenging task. Modern approaches to classification are often resourceintensive and may become bottlenecks. A microservice architecture that allows maintaining a model of real world data, and adding newinformation as it becomes available is presented in this paper. Updates to the model are handled via different microservices. Thearchitecture and connected workflows are demonstrated in a use case of classifying text data in a taxonomy represented by a directedacyclic graph (DAG). The presented architecture removes the classification bottleneck, as multiple data points can be addedindependent of each other, and reading access to the model is not restricted. Additional microservices also enable a manual interventionto update the model.
Keywords: Text Classification; Distributed Environment; Microservice Architecture; Semi-Supervised Learning.

1. Introduction

With the emergence and adoption of Industry 4.0 and, asa result, the Internet of Things (IoT), software systemsstarted producing large quantities of data that cannot beprocessed promptly by classic monolithic software. In-stead, a software solution based on microservices, whichcan handle this volume of data by distributing the work-load on different machines, is proposed. IoT applicationsprovide large amounts of data, such as sensor and time-series data, and allow the generation and capture of user-specific information. Depending on the type of data, pro-cessing has to take different problems into account. Sensorand time-series data might contain data loss, invalid val-ues, or an overall data drift, while user data must cope withmissing values and input errors. By introducing microser-vices, it is possible to process different data sources inparallel without incurring priority over data managementand processing. One or more connected microservices can

handle each data source. In order to use the resulting pro-cessed data, due to its expected size, semi-supervised orunsupervised learning is employed. Other machine learn-ing methods rely on a perfect reference data set, which isoften not feasible in real-world scenarios. These methodsare expensive in terms of system load and need access toall data, frequently resulting in a bottleneck for the sys-tem as a whole. As modern software solutions alreadyuse microservice architectures and distributed calculation,moving semi-supervised learning into a distributed envi-ronment is suggested.
In this publication, the use case focused on is the textclassification of restaurant products. The information isalready extracted and available in its basic textual form.Example input data include:

• Wiener Schnitzel mit Reis und Petersilerdäpfel• Backhendlsalat mit Kernölpanade• Spicy Chickenburger

1

     
      

2724-0029  ©  2022  The  Authors.doi:  10.46354/i3m.2022.emss.022

Proceedings  of the  33rd  European  Modeling  &  Simulation  Symposium ((EMSS)),  02218th  International  Multidisciplinary  Modeling  &  Simulation  Multiconference

https://creativecommons.org/licenses/by-nc-nd/4.0/.


2 | 33rd European Modeling & Simulation Symposium, EMSS 2022

unclassifieable 
samples

sync messages Classification
Service

classified 
samples

sync messages

new category meesages Decider  
Service

Category 
Service

Any Service using
the Classification

System

classified 
samples

unclassifieable 
samples

Classification System

Figure 1. Overview of the suggested architecture, also containing messageflow between the services.

The data has been generated by many different Aus-trian and German restaurant owners, resulting in hetero-geneous descriptions for similar products. The aim is toprocess and categorize this data in order to create a basicdata definition for German-speaking restaurants.
2. Architecture

A microservice architecture consisting of three microser-vice types is presented in this section. The first service,named Category Service, is a central repository for the pos-sible classes. It provides unified and robust access to theclassification targets consumed by the other services. The
Classification Service contains the algorithm to assign a textsample to a class. It is dependent on the Category Servicesince it needs the predefined classes for the classification.The third service, referred to as Decider Service, is optional.Its purpose is to support the Classification Service when anassignment of a sample to a class is not certain. In suchcases, it helps to decide the class using manual labelling,hence the name Decider Service. The following sectionsdescribe the architecture, focusing on communication in-terfaces and protocols.Figure 1 depicts an overview of the orchestration of themicroservices, including their messaging interfaces, in-puts, and outputs. Each of these microservices is describedin-depth in the following subsections.
2.1. Category Service

In order to enable distributed computation, there needs tobe an external data storage holding the meta-informationnecessary for said computation (Salza et al., 2017). In thisuse case, the meta-information describes the possible cat-

egories for a given product of a restaurant. It is representedas a directed acyclic graph (DAG), persisted in a graphdatabase. Each of these nodes is referred to as a categoryor cluster. Leaf nodes are the most discrete classificationpossible. This is unfeasible in a production environment,though, as text data is inherently convoluted and unreli-able (Klein, 2001). Hence, hierarchical clustering usingDAGs, where the path from the root to the leaf describesthe possible classification is proposed. As seen in Figure 2,an abstract root node encapsulating all items in the DAG isassumed. Each edge describes a specification of the itemclass relative to the parent node. The full path from par-ent to leaf describes the actual classification. This pathis pruned when the classification would not be confidentenough in a lower level. The resulting incomplete path isdefined as a sub DAG which can be used for further manualclassification or refinement. Note that each sample canonly be part of one cluster when manual classification isapplied. This fundamental design decision has been takensince, otherwise, the evaluation for system users wouldhave been deemed convoluted to allow proper product in-formation management.
Access to this DAG is managed via RabbitMQ (VMware)messaging. Each service needing the DAG subscribes tothe classification service. There are two types of messages,sync messages and update messages. Sync messages arecommonly sent during the subscription of a service, as thecategory service shares the whole DAG using this messagetype. Update messages describe changes to the currentDAG, that need to be reflected to all subscribers. Adding,deleting and replacing of both leaf nodes and subtrees inthe DAG is supported. Whenever changes are applied to theDAG, update messages are sent and, given inconsistencyin some service cache, sync messages may be requested.
Depending on its quality, the DAG might evolve duringthe runtime of the system, when used in conjunction withthe Decider Service (see subsection 2.3). The system, aswell as any end users, can suggest changes to the currentDAG. As stated above, messaging can trigger changes andsyncs of the DAG, but changes can be made directly tothe DAG using the REST API of the Category Service. Anyconfirmed changes, i.e., changes authored or accepted bydomain experts using a Decider Service, are synced to activeservices.
Initially, the goal is to fit all provided samples in eachcluster of the DAG. During a starting period, no furtherclusters are proposed. After reaching a certain number ofclassified items inside a cluster, the accuracy of the classi-fication service might suffer as the coherence of the clusteritself decreases (Song and Park, 2009). Furthermore, his-torical changes in data might inadvertently change theinitial meaning of the cluster (Lu et al., 2018). Hence, ad-vanced DAG management, like splitting a cluster into two,is recommended by the Category Service. Though, no suchaction is taken without confirmation of the user.



Meindl et al. | 3

Article

Food

Starter Main Dish

FishMeatWarm Starter Cold Starter

Sausages Grilled Beef

Drink

Alcoholic Non Alkoholic

Hot DrinkLemonadeBeer Wine

Tea Cofffee

Figure 2. Example DAG describing food categories. Marked in blue is a possible complete classification path. The yellow path is an example of an unfinishedclassification path, allowing for further manual classification

2.2. Classification Service

The classification service encapsulates logic to processtext and cluster it accordingly. Relative Levensthein Dis-tance (Cheatham and Hitzler, 2013; Yujian and Bo, 2007)with substring classification (Zhang and Lee, 2006) is ap-plied to product descriptions of restaurants. The data en-ters the system using asynchronous message queuing andundergoes standard string preprocessing steps, such asnormalization of characters and number extraction (Petzet al., 2012). The results are comparable tokens in theircorresponding normal form, that are split into contextualsubstrings. A sequence of substrings can then be used tomatch certain product names, which is in turn used as afeature for the classification service. This transformationincreases robustness of the clustering, as it mitigates theeffect of typographical error in clustering (Zhang and Lee,2006). The goal is to aggregate the given data into hierar-chical, cohesive clusters, whereas each cluster representsone possible category in the hierarchy for a given sample.
During startup of the classification service, it requeststhe DAG from the category service using a sync message(see subsection 2.1). The DAG describes the currently de-fined cluster, in which data samples can be classified into.In this service, the DAG is considered read-only and onlymodified, when the category service explicitly shares up-date messages. Thus, each instance of the classificationservice is dependent on the category service.
Given a text sample, the Classification Service tries toclassify it into the current node’s children. Depending onthe cohesion of the clusters the children of the selectednode are checked recursively, till one of two cases happen:(1) Leaf nodes of the DAG are reached, meaning the itemcan be clearly classified as one specific category, markedin Figure 2 in blue. (2) The confidence of the classificationfalls below a certain threshold, resulting in the classifica-tion of the sample in the current node. In Figure 2, thispath is marked in yellow. This uncertain classification canmanually be refined using the Decider Service (see subsec-

tion 2.3), in turn increasing the classification accuracy forfuture samples.During the system’s lifetime, classification results maynot be absolute. Clusters may be added and removed, newdata may make a cluster more attractive for a subset ofsamples of an already established cluster, or new datasetsmight describe different domains entirely (Lu et al., 2018).Hence, reevaluating the classified samples during the sys-tem lifecycle to ensure they are still part of the most fit-ting cluster, if any changes to the DAG are registered, issuggested. These changes are suggested by domain ex-perts using a Decider Service. Each sample affected by thechange is considered unclassified again and reintroducedto the message queue which holds the input data, i.e., thesamples yet to classify. The classification starts from thebeginning for each of these samples.
2.3. Decider Service

Many machine learning algorithms are strongly depen-dent on labelled data. In terms of clustering, the lack oflabels is not as severe, but still an issue for the correct exe-cution of the system as a whole. Due to the lack of context,data might be classified with high confidence into wrongclusters, as there are no references yet. This dilemma iscalled the cold start problem (Darshna, 2018).
Chicken Salad is used as an example, as shown in Fig-ure 3. Given a cluster Salad and a cluster Chicken Dishchances are that the sample is classified into salad, whichis initially correct, as both the Levensthein Distance aswhole and relative to the substring matches quite well.But this raises the issue, that further samples containingthe phrase Chicken, such as Garlic Chicken, can be consid-ered Salad, as the resulting Salad cluster would be morecohesive than the Chicken Dish cluster, when relying onthe Levensthein metric with substring classification. Thesame applies the other way round. If Chicken Salad is clas-sified as Chicken Dish, Caesar Salad might follow the sameprinciple. This problem, caused by insufficient data, will



4 | 33rd European Modeling & Simulation Symposium, EMSS 2022

Article

ChickenSalad

Cesar Salad Chicken
Nuggets

Chicken Salad

pending classification

t0 t1

Article

ChickenSalad

Cesar Salad Chicken
NuggetsChicken Salad

t2 t3

Article

ChickenSalad

Cesar Salad Chicken
NuggetsChicken Salad

Garlic Chicken

pending classification

Article

ChickenSalad

Cesar Salad Chicken
NuggetsChicken Salad Garlic Chicken

Figure 3. Example for possible misclassification during application start with little to no labeled data.

be mitigated by introducing a limited supervision compo-nent into the system. Each classification is denoted with aconfidence for each possible cluster. The cluster deemedmost suitable for a sample in terms of confidence still hasto surpass a predefined threshold for automatic classifica-tion. Otherwise, manual classification by domain expertsis necessary.A Decider Service is a microservice, that acts as an in-terface for domain experts to manually classify samples.The goal is to reduce the necessity of such services to aminimum, as manual classification is slow, costly, and bi-ased (Ur-Rahman and Harding, 2012). But, as describedabove, certain situations may need additional support dur-ing classification.One other important purpose of this service is increas-ing the amount of articles that can be classified. As canbe seen in Figure 4, the amount of classifiable items withthe original labelled items has a certain limit (larger areaswith blue background). In order to increase the numberof classifiable items, manually labelled items is added inmultiple intervals (smaller areas with yellow background).This results in more labelled items that can be used dur-ing automatic classification. The ratio of manually labelleditems to automatically classified items is minimized, whenperforming manual classification as soon as the amountof automatically classified items stagnates.Depending on the available resources, meaning data,computational power, and workforce, multiple Decider Ser-

vices can be deployed, as they are independent of each other.Two strategies are supported when dealing with multipledomain expert inputs:
First come first serve The first manual classification isassumed correct, and the sample is removed fromfurther classification. Any other input is dropped.
Cooperative weights Given more than one registered De-

cider Service, a manual classification corresponds to apositive weighting for a cluster in the classificationprocess. The sum of these weights determine the clus-ter this sample is classified into. Given two manualclassifications in different clusters, the Classification
Service chooses the one manual classification with thehigher weight to break the tie.

Each Decider Service receives the samples to manuallyclassify via asynchronous message queues and also syncsthe DAG of the Category Service. This also allows indepen-dent horizontal scaling of these services, by adding one ormore instances. The received samples are cached locally,and during each manual classification step, a random sub-set of the cache is selected for the domain expert to resolve.Each subset is annotated with the possible clusters andconfidences, as determined by the Classification Service, tosupport the decision-making process of the domain expert.The resulting classified sample is shared throughout thesystem via message queues and removed from all Decider
Services.



Meindl et al. | 5

Time

Amount of classified
articles

Initially labeld data

Automatic classification

Manual classification

Figure 4. Schematic visualization of the amount of classified articles over time from Sandler (2021).

In the case that a sample does not fit into any cluster,an interface for suggesting a new category to the Cate-
gory Service is provided. The domain expert has to des-ignate the name of the category as well as its positionin the DAG. Additionally, depending on the relative po-sition of the new category in the DAG, they may trigger there-clustering process of all samples in the affected DAGchanges. Changed, or removed categories trigger the sameprocess, while newly introduced categories only cause thesamples of all parent nodes to be reclassified. This be-haviour for new categories can be deactivated by the do-main expert per new category.
3. Related Work
Distributing machine learning algorithms has been triedand tested several times using different explicit algorithmslike Support Vector Machines, or Relevance Vector Ma-chines (Scardapane et al., 2016; Silva et al., 2010).The dif-ference to the approach of this paper is, that with the ap-proach of Silva et al. (2010) the classification tasks aremodelled with a DAG but the items which need to be clas-sified are static. In the case of this publication, the itemswhich need to be classified can be added dynamically withmessage queues. Most previous works have studied thebenefit of having multiple nodes prepared and trainedthe same algorithms for improved accuracy and reliabil-ity (Nedelkoski et al., 2019). The mentioned publicationsshow an increase of performance when using distributedclassification, in this paper the goal an increase in avail-ability due to the fact that the distribution enables readaccess to the current DAG while there are still new itemscoming in.Salza et al. (2017) present cCube, a solution for ensemblemachine learning tailored to evolutionary machine learn-

ing classifications. It employs a microservice architectureto train multiple models in parallel and generate an opti-mal algorithm for a given problem. Other than cCube, thisapproach gives the possibility for manual classificationcombined with an automatic one.
In recommendation systems, clustering of user inter-ests is used to determine further interests of this and sim-ilar users. Darshna (2018) applies k-Means clustering onmusical features and user ratings to determine good sug-gestions for different users. Additionally, a mitigation ofthe cold start problem by enriching small datasets withcurrently popular data samples is proposed. This approachis only feasible, when a metric for popular items exists,which, for most non-marketing related use cases, doesnot exist as it is in this case. In the proposed approach,clustering with k-Means is not possible in the first stepbecause there are no explicit metrics that can be used. Thisis why specific algorithms were developed for this use case.Sandler (2021) described these algorithms in her MasterThesis. k-Means is used by the described system to clusterrestaurants based on the products they offer.

4. Conclusion and Future Work

This distributed approach of classifying items allows scal-ing performance fluently by adding more machines formanual labellings, like the Decider Service. Also, the clas-sification can be distributed to several machines, whichenables querying the graph while classifications are pro-cessed. Also, the quantity and quality of the labelling canbe improved, as it can be seen in Figure 4. In the future,this approach’s performance enhancements will be testedprecisely in several test settings to determine which bot-tlenecks can be eliminated.



6 | 33rd European Modeling & Simulation Symposium, EMSS 2022

References

Cheatham, M. and Hitzler, P. (2013). String similarity met-rics for ontology alignment. In International semantic
web conference, pages 294–309. Springer.Darshna, P. (2018). Music recommendation based on con-tent and collaborative approach & reducing cold startproblem. In 2018 2nd International Conference on Inven-
tive Systems and Control (ICISC), pages 1033–1037. IEEE.Klein, B. D. (2001). User perceptions of data quality: In-ternet and traditional text sources. Journal of computer
information systems, 41(4):9–15.Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., and Zhang,G. (2018). Learning under concept drift: A review.
IEEE Transactions on Knowledge and Data Engineering,31(12):2346–2363.Nedelkoski, S., Cardoso, J., and Kao, O. (2019). Anomaly de-tection and classification using distributed tracing anddeep learning. In 2019 19th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGRID),pages 241–250.Petz, G., Karpowicz, M., Fürschuß, H., Auinger, A., Win-kler, S. M., Schaller, S., and Holzinger, A. (2012). Ontext preprocessing for opinion mining outside of labora-tory environments. In International Conference on Active
Media Technology, pages 618–629. Springer.Salza, P., Hemberg, E., Ferrucci, F., and O’Reilly, U.-M.(2017). Ccube: A cloud microservices architecture forevolutionary machine learning classification. In Pro-
ceedings of the Genetic and Evolutionary Computation
Conference Companion, GECCO ’17, page 137–138, NewYork, NY, USA. Association for Computing Machinery.Sandler, S. (2021). Classification of Restaurant Articlesinto a Taxonomy. Technical report.Scardapane, S., Fierimonte, R., Di Lorenzo, P., Panella,M., and Uncini, A. (2016). Distributed semi-supervisedsupport vector machines. Neural Networks, 80:43–52.Silva, C., Lotric, U., Ribeiro, B., and Dobnikar, A. (2010).Distributed text classification with an ensemble kernel-based learning approach. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews),40(3):287–297.Song, W. and Park, S. C. (2009). Genetic algorithm fortext clustering based on latent semantic indexing. Com-
puters & Mathematics with Applications, 57(11-12):1901–1907.Ur-Rahman, N. and Harding, J. A. (2012). Textual datamining for industrial knowledge management and textclassification: A business oriented approach. Expert
Systems with Applications, 39(5):4729–4739.VMware. Rabbitmq. https://www.rabbitmq.com/, ac-cessed on, 13 May 2022.Yujian, L. and Bo, L. (2007). A normalized levenshteindistance metric. IEEE transactions on pattern analysis
and machine intelligence, 29(6):1091–1095.Zhang, D. and Lee, W. S. (2006). Extracting key-substring-group features for text classification. In Proceedings of
the 12th ACM SIGKDD international conference on Knowl-

edge discovery and data mining, pages 474–483.

https://www.rabbitmq.com/

	Introduction
	Architecture
	Category Service
	Classification Service
	Decider Service

	Related Work
	Conclusion and Future Work

