The Role Of AI In Warehouse Digital Twins
- a Adnane Drissi Elbouzidi ,
- b Marie-Jane Bélanger,
- c Abdessamad Ait el Cadi,
- d Robert Pellerin,
- e Samir Lamouri,
- f Estefania Tobon Valencia
- a,e LAMIH, Arts et Métiers ParisTech, 51 Bd de l'Hôpital, Paris, 75013, France
- c Univ. Polytechnique Hauts-de-France, LAMIH, CNRS, UMR 8201, F-59313 Valenciennes, France / INSA Hautsde-France, F-59313 Valenciennes, France
- b,d Polytechnique Montreal, 2500 Chemin de Polytechnique, Montréal, H3T 1J4, Canada
- f Groupe Square cabinet Flow&Co, Square Research Center, 173 Avenue Achille Peretti, Neuilly-sur-Seine, 92200, France
Cite as
Elbouzidi A.D., Bélanger M.J., El Cadi A.A., Pellerin R., Valencia E.T., and Lamouri S. (2022).,The Role Of AI In Warehouse Digital Twins. Proceedings of the 34th European Modeling & Simulation Symposium (EMSS 2022). , 024 . DOI: https://doi.org/10.46354/i3m.2022.emss.024
Abstract
In the era of Industry 4.0, digital twins are at a pivotal phase. For a concept that is so inconsistently defined in the literature, it has been used for many applications, especially in manufacturing, production, and operations. DT not only allows for supervision and running simulations, but it also supports AI applications since it is mapped to all types of data and Intel on the physical object. On the other hand, warehouses have been subject to little digitization over the years. Warehouse management is at the very core of both manufacturing and retail operations, ensuring supply chain and production continuity. It is also a conjunction of uncertain material handling activities. It could easily benefit from the Information visibility and the smart features supplied by digital twins and machine learning. In this perspective, this paper examines the use cases of warehouse digital twins (WDT). This study aims to assess the maturity of AI application within WDT, namely techniques, objectives, and challenges. Consequently, inconsistencies are identified and research gaps are presented, making way for future development and innovation.
References
- Bányai, Á., Illés, B., Glistau, E., Coello Machado, N. I.,Tamás, P., Manzoor, F., & Bányai, T. (2019). Smartcyber-physical manufacturing: Extended and real-time optimization of logistics resources in matrixproduction.Applied Sciences (Switzerland),9(7).https://doi.org/10.3390/app9071287
- Co Builder, 2018. The ‘digital Twin’–A Bridge Between the Physical and the Digital World.https://cobuilder.com/en/the-digital-twin-a-bridge-between-the-physical-and-the-digital-world/.
- Corneli, A., Naticchia, B., Cabonari, A., & Bosché, F.(2019, May 24). Augmented Reality and Deep Learningtowards the Management of Secondary Building Assets. https://doi.org/10.22260/ISARC2019/0045
- Fuller, A., Fan, Z., Day, C., & Barlow, C. (2020). Digital Twin: Enabling Technologies, Challenges and Open Research. IEEE Access,8, 108952–108971.https://doi.org/10.1109/ACCESS.2020.2998358
- Gao, Y., Chang, D., Chen, C.-H., & Xu, Z. (2022). Designof digital twin applicationsin automated storageyard scheduling.Advanced Engineering Informatics,51, 101477.https://doi.org/https://doi.org/10.1016/j.aei.2021.101477
- Glatt, M., Sinnwell, C., Yi, L., Donohoe, S., Ravani, B., & Aurich, J. C. (2021). Modeling and implementation of a digital twin of material flows based on physics simulation. Journal of Manufacturing Systems,58,231–245.https://doi.org/10.1016/j.jmsy.2020.04.015
- Gong, Y., &de Koster, R. B. M. (2011). A review onstochastic models and analysis of warehouse operations. Logistics Research,3(4), 191–205.https://doi.org/10.1007/s12159-011-0057-6
- Hashash, O., Chaccour, C., & Saad, W. (2022).EdgeContinual Learning for Dynamic Digital Twins overWireless Networks.https://doi.org/10.48550/ARXIV.2204.04795
- Hayward, N. (2019). Machine Learning Image Analysis for Asset Inspection. SPE Offshore Europe Conference and Exhibition, Aberdeen, UK. https://doi.org/10.2118/195773-MS
- Hribernik, K., Cabri, G., Mandreoli, F., & Mentzas, G. (2021). Autonomous, context-aware, adaptiveDigital Twins—State of the art and roadmap.Computers in Industry, 133, 103508.https://doi.org/10.1016/j.compind.2021.103508
- Huang, H., Yang, L., Wang, Y.,Xu,X., & Lu, Y. (2021).Digital Twin-driven online anomaly detection foran automation system basedon edge intelligence.Journal of Manufacturing Systems,59, 138–150.https://doi.org/10.1016/j.jmsy.2021.02.010
- Kegenbekov, Z., & Jackson, I. (2021). Adaptive supplychain: Demand-supply synchronization using deepreinforcement learning.Algorithms,14(8).https://doi.org/10.3390/a14080240
- Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn,W. (2018).Digital Twin in manufacturing: A
categorical literature review and classification.51(11),1016–1022.https://doi.org/10.1016/j.ifacol.2018.08.474
- Leng, J.,Yan, D., Liu, Q., Zhang, H., Zhao, G., Wei, L.,Zhang, D., Yu, A., & Chen, X. (2021).Digital twin-driven joint optimization of packing and storage assignment in large-scale automated high-rise warehouse product-service system. International Journal of Computer Integrated Manufacturing,34(7–8), 783 800.https://doi.org/10.1080/0951192X.2019.1667032
- Leung, E. K. H., Lee, C. K. H., & Ouyang, Z. (2022). From traditional warehouses to Physical Internet hubs: A digital twin-based inbound synchronization framework for PI-order management. International Journal of Production Economics,244.https://doi.org/10.1016/j.ijpe.2021.108353
- M. I. Jordan, & T. M. Mitchell. (2015). Machinelearning: Trends, perspectives, and prospects.Science,349(6245), 255–260.https://doi.org/10.1126/science.aaa8415
- Mehmood, M. U., Chun, D., Zeeshan, Han, H., Jeon, G.,& Chen, K. (2019). A review of the applications of artificial intelligence and big data to buildings for energy-efficiency and a comfortable indoor living environment. Energy and Buildings,202, 109383.https://doi.org/10.1016/J.ENBUILD.2019.109383
- Melesse, T. Y., Bollo, M., Pasquale, V. di, Centro, F., &Riemma, S. (2022).Machine Learning-BasedDigital Twin for Monitoring Fruit QualityEvolution.Procedia ComputerScience,200, 13–20.https://doi.org/https://doi.org/10.1016/j.procs.2022.01.200
- Minerva, R., Awan, F. M.,& Crespi, N. (2021).Exploiting Digital Twin as enablers for SyntheticSensing.IEEE Internet Computing.https://doi.org/10.1109/MIC.2021.3051674
- Pan, I., Mason, L. R., & Matar, O. K. (2022). Data-centric Engineering : integrating simulation,machine learning and statistics. Challenges andopportunities.Chemical Engineering Science, 249, 117271. https://doi.org/10.1016/j.ces.2021.117271
- Sacks, R., Brilakis, I., Pikas, E., Xie, H. S., & Girolami,M. (2020). Construction with digital twininformation systems. Data-Centric Engineering, 1.https://doi.org/10.1017/dce.2020.16
- Tufano, A., Accorsi, R., & Manzini, R. (2022).Amachine learning approach for predictivewarehouse design.International Journal of AdvancedManufacturing Technology,119(3–4), 2369 2392.https://doi.org/10.1007/s00170-021-08035-w
- Usuga Cadavid, J. P.,Lamouri, * Samir, Grabot, B., &Fortin, A. (2019).Machine Learning in Production Planning and Control: A Review of Empirical Literature.
- Wang, W., Zhang, Y., & Zhong, R. Y. (2020).A proactivematerial handling method for CPSenabled shop-floor.Roboticsand Computer-IntegratedManufacturing,61.https://doi.org/10.1016/j.rcim.2019.101849
- Wu, W., Zhao, Z., Shen, L., Kong, X. T. R., Guo, D.,Zhong, R. Y., & Huang, G. Q. (2022). Just Trolley:Implementation of industrial IoT anddigital twin-enabledspatial-temporal traceability and visibilityfor finished goods logistics.Advanced EngineeringInformatics,52.https://doi.org/10.1016/j.aei.2022.101571
- Xiuyu, C., & Tianyi, G. (2018). Research on the Predicting Model of Convenience Store Model Based onDigitalTwins.Proceedings-2018International Conference on Smart Grid and Electrical Automation, ICSGEA 2018, 224–226.https://doi.org/10.1109/ICSGEA.2018.00062
- Zacharaki, A., Vafeiadis, T., Kolokas, N., Vaxevani, A.,Xu, Y., Peschl, M., Ioannidis, D.,& Tzovaras, D.(2021). RECLAIM: Toward a New Era ofRefurbishment and Remanufacturing of IndustrialEquipment.Frontiers in Artificial Intelligence,3.https://doi.org/10.3389/frai.2020.570562
- Zhan,X., Wu, W., Shen, L., Liao, W., Zhao, Z., & Xia,J.(2022c). Industrial internet of things andunsupervised deep learning enabled real-timeoccupational safety monitoring in cold storagewarehouse.Safety Science,152, 105766.https://doi.org/10.1016/j.ssci.2022.105766
- Zhao, Z., Shen, L., Yang, C., Wu, W., Zhang, M., &Huang, G. Q. (2021). IoT and digital twin enabledsmart tracking for safety management.Computersand Operations Research,128.https://doi.org/10.1016/J.COR.2020.105183
- Zheng, X., Lu, J., & Kiritsis, D. (2021). The emergence of cognitive digital twin: vision, challenges and opportunities. International Journal of ProductionResearch.https://doi.org/10.1080/00207543.2021.201459
Volume Details
Volume Title
Proceedings of the 34th European Modeling & Simulation Symposium (EMSS 2022)
Conference Location and Date
Rome, Italy
September 19-21, 2022
Conference ISSN
2724-0029
Volume ISBN
978-88-85741-72-0
Volume Editors
Michael Affenzeller
Upper Austria University of Applied Sciences, Austria
Agostino G. Bruzzone
MITIM-DIME, University of Genoa, Italy
Emilio Jimenez
University of La Rioja, Spain
Francesco Longo
University of Calabria, Italy
Antonella Petrillo
Parthenope University of Naples, Italy
EMSS 2022 Board
Francesco Longo
EMSS General Co-Chair
University of Calabria, Italy
Emilio Jimenez
EMSS General Co-Chair
University of La Rioja, Spain
Michael Affenzeller
EMSS Program Co-Chair
Upper Austria University of Applied Sciences, Austria
Antonella Petrillo
EMSS Program Co-Chair
Parthenope University of Naples, Italy
Copyright
© 2022 The Authors. The articles are open access and distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) license.