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Abstract 
In the era of Industry 4.0, digital twins are at a pivotal phase. For a concept that is so inconsistently defined in the literature, it 
has been used for many applications, especially in manufacturing, production, and operations. DT not only allows for 
supervision and running simulations, but it also supports AI applications since it is mapped to all types of data and Intel on the 
physical object.  On the other hand, warehouses have been subject to little digitization over the years. Warehouse management 
is at the very core of both manufacturing and retail operations, ensuring supply chain and production continuity. It is also a 
conjunction of uncertain material handling activities. It could easily benefit from the Information visibility and the smart 
features supplied by digital twins and machine learning. In this perspective, this paper examines the use cases of warehouse 
digital twins (WDT). This study aims to assess the maturity of AI application within WDT, namely techniques, objectives, and 
challenges. Consequently, inconsistencies are identified and research gaps are presented, making way for future development 
and innovation. 
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1. Introduction 

Intralogistics is at the center of both manufacturing 
efficiency and customer satisfaction. Material 
handling could amount from 15% to 70% of 
production costs. In-store warehouse activities are 
also among the most hazardous industrial processes, 
causing up to 50% of all kinds of industrial injuries 
(Glatt et al., 2021). In a “post covid” world, companies 
had to adapt their strategies to stay financially above 
water and satisfy impulsive and unheard customer 
behavior. According to a survey done by LaserShip, 
more than 60% of consumers are willing to pay more 

for same-day delivery. They are also more demanding 
of product personalization and ethical and 
environmental beliefs. This requires a dynamic, 
straightforward, and completely transparent and 
visible process to one of the most unpredictable 
activities, flawed by supply chain structure change, 
demand seasonality, transportation cost change 
trends, and many other variabilities (Gong & de 
Koster, 2011). Digital twin (DT) is one of the emerging 
technologies gaining popularity over the last decade 
and having the potential to better warehouse 
management. The concept has stirred a lot of conflict 
in academia and industry as to how it should be 
defined. DT should ensure an ever-evolving, fully 
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connected, and reasonably identical entities linked 
through IoT and allowing data analytics and 
simulation. The digital twin has "smart" capabilities 
allowing it to not only  follow all the changes 
happening in the warehouse but also be the one 
suggesting modifications. Artificial Intelligence (AI) 
proposes a set of methods that can aid decision 
making, if not do it autonomously, based on collected 
information. Since DTs have undergone the trouble of 
collecting data and processing it, it only makes sense 
to go the extra mile and use advanced data analytics to 
grant it knowledge if not wisdom. 

This paper aims to assess the maturity of AI 
application within the DT paradigm in warehouse 
management. Through a systematic review of 
scientific literature, we attempt to answer the 
following research questions:  What are the AI 
techniques most used for Warehouse management 
under the DT paradigm?  How is AI employed to ensure 
and elevate WDT functions? What are the challenges 
and barriers to adopting both WDT and AI in 
warehouses?  

To do so the rest of the paper is organized as 
follows. Section 2 showcases the research 
methodology followed by section 3 that presents and 
details the analysis framework. Section 4 presents and 
discusses the findings of the review. Lastly, Section 5 
presents conclusions and open research, with overall 
challenges and perspectives to conclude the paper. 

2. Research methodology 

This state of the art focuses on papers that have 
covered the use of both AI and DT technologies to 
optimize in-store warehouse activities. We have 
adopted the machine learning categories described by 
Usuga Cadavid et al. (2019) to construct our research 
query as follows: 

TITLE-ABS-KEY ( "digital twin"  OR  "digital twins" )  AND  
TITLE-ABS-KEY ( "warehouse"  OR  "warehousing"  OR  
"material handling"  OR  "inventory"  OR  "packing"  OR  
"store"  OR  "storage" )  AND  TITLE-ABS-KEY ( "deep 
learning"  OR  "artificial intelligence"  OR  "machine 
learning"  OR  "AI"  OR  "ML"  OR  "neural networks"  OR  
"regression"  OR  "clustering"  OR  "sarsa"  OR  "nearest 
neighbors"  OR  "Q-learning"  OR  "decision tree" ) 

We’ve studied the results through the phases 
detailed in figure 1. An additional reference was added 
upon analysis of the selected articles. The selected 
references either display a fully embedded AI and 
digital twin framework or explain the possible 
relationships between both technologies and how one 
could exploit the other.  

3. Analysis framework 

Our analysis differentiates what qualifies as a DT 
and how it was used in collaboration with AI. We have 
also taken into consideration the data used in both AI 
and DT to represent warehousing activities.  

 

Figure 1. Research strategy 

3.1. Digital twin  

DTs are comprehensive digital representations of the 
physical assets, comprising their design and 
configuration, state and behavior (Hribernik et al., 
2021). Fuller et al. (2020) provided a more grounded 
interpretation of the concept. They defined DT as the 
effortless integration of data between a physical and 
virtual machine in either direction. Instead of focusing 
on the definition, Fuller et al. made the distinction of 
what is not a DT and why. This led to identification of 
the following:  

1) Digital Model: There is no automatic data 
exchange between the physical model and digital 
model. This means once the simulation is created, a 
change made to the physical object has no impact. 

2) Digital Shadow: A digital shadow is a digital 
model with a one-way flow between the physical and 
digital objects. A change in the state of the physical 
object leads to a change in the digital representation 
but not vice versa.  

3) Digital Twin: the data flow is bidirectional. A 
change made to the physical object automatically 
changes the digital object and vice versa. 

In order to further differentiate the maturity level 
of the studied papers we also identified the 
characteristics of DTs, detailed in the literature. Zheng 
et al. (2021) synthetized and identified the 
characteristics of cognitive digital twins  as DT-based, 
Cognition, Full lifecycle management, Autonomy 
capability, and Continuous evolving. On the other 
hand, Hribernik et al. (2021) described digital twins as 
autonomous, context-aware, and adaptive. We have 
identified DT characteristics relevant to our study, 
which are a conjunction of the two visions presented 
previously. Through our research, we’ve identified 
how AI could be incorporated. Each characteristic is 
defined as follows: 

Context-awareness (CA) is the ability to distinguish 
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incoming stimuli clearly. It does not stop at the use of 
IoT and Information systems (IS), but also the way 
they are utilized. 

Autonomy (Auto) is the DT’s ability to conduct 
autonomous activities without human assistance or a 
minimum level of human intervention. 

Continuous evolving (CE) is the ability to grow with 
the real system along the entire lifecycle. DT updates 
itself according to the change of relevant data, 
information, and knowledge from the real system and 
all other interconnected software. 

Full lifecycle management (FLM) allows the model 
to cover different phases across the entire lifecycle of 
the system, including the beginning of life (BOL, e.g., 
design, building, testing), middle of life (MOL, e.g., 
operating, usage, maintenance) and end-of-life (EOL, 
e.g., disassembly, recycling, remanufacturing). 

3.2. Artificial Intelligence (AI) 

AI was originated in 1956 at the Dartmouth Summer 
Research Project on Artificial Intelligence and had a 
tardy and rough evolution. To this day, there is still no 
consensus on what is properly considered as AI. 
According to Mehmood et al. (2019) the AI methods 
include Analytic Hierarchy Process (AHP), fuzzy logic 
(FL), Genetic algorithms, Neural network (NN), and 
Simulated Annealing (SA). Modern subsections of AI 
include machine learning (ML) and deep learning 
(DL). The three terms are often used interchangeably 
in the literature. DL generally refers to deep artificial 
neural networks and sometimes deep reinforcement 
learning, both are primarily ML techniques; hence it is 
considered a specific type of ML. Many developers of 
AI systems now recognize that it can be far easier to 
train a system by showing it examples of desired 
input-output behavior than to program it manually by 
anticipating the desired response for all possible 
inputs (M. I. Jordan & T. M. Mitchell, 2015).  

ML can be primarily categorized into three types. The 
main discrepancy between these types lies in whether 
they are trained with labeled datasets or not (M. I. 
Jordan & T. M. Mitchell, 2015): 

a) Supervised learning (SL): The training set provides 
clearly distinguished input features X and the 
corresponding output labels Y. 

b) Unsupervised learning (UL): the algorithm is 
provided only input features X. It is up to the model to 
classify all data in the sample space using techniques 
such as cluster analysis. 

c) Reinforcement learning (RL): The learner performs 
a specific action in an interactive environment. Based 
on experiments, the program can be rewarded or 
punished. The goal is to obtain the maximum 
cumulative reward value through trial and error. 

3.3. Data  

This section details how data is used to describe 

warehouses in the virtual space. Almost every feature 
or application of AI and DTs can be traced back to data. 
It is one of the key components to enable real time 
connection, contextual information, and training the 
AI algorithms … It is also distinctively used depending 
on the application, availability and the source. 
According to Leung et al. (2022), three different types 
of data, sourced from manufacturing information 
systems, IoT or manually entered are collected in a 
warehouse:  

• Environmental data: include temperature, 
humidity, and light intensity ... These data could 
be useful in decision making, depending on the 
types of goods stored in the warehouse.  

• Product data: include the inventory levels and 
storage locations of goods. For instance, Radio 
Frequency Identification (RFID) technologies can 
be used to keep track of storage locations and 
quantities linked to the warehouse management 
system (WMS) and then the DT for replenishment 
and stock-keeping purposes.  

• Handler data: include data related to both 
equipment and workers, such as their real-time 
locations. It can be data collected from workers' 
handheld devices given to workers to track their 
locations or measure some other physical 
variable.  

It is also important to take into consideration data 
sources (WMS, IoT …) so as to judge the level of DT 
Interoperability and connectivity to other software. 

3.4. Warehouse activities 

In the scope of this study, we have distinguished two 
types of warehouses : Mechanical warehouses with 
automatic systems and mechanical tools that require 
minimal human intervention (e.g., conveyors, stacker 
crane …) and non-mechanical warehouses in which 
operators fulfil all processes through manual labor or 
while using machines and lifting tools (e.g. AGVs, 
Forklifts …). 

Warehousing activities depend on the product, 
industrial sector and the type of the warehouse itself. 
We have chosen to use Gong & de Koster's (2011) 
adaptation of warehouse logistics. The general 
material flow of In-house logistics goes through the 
following activities: product/order arrival, put-away 
and preparation for storage, storage, order picking, 
and preparations for shipping (packaging, 
accumulation, sortation) and shipping. 

4. Results 

In the analyzed literature, AI applications in WDTs 
range from processes, strictly done in a warehouse, to 
warehouse-related activities in other fields such as 
asset management and synthetic sensing (Bányai et 
al., 2019; Corneli et al., 2019; Minerva et al., 2021; 
Zacharaki et al., 2021). The papers studied here 
present a mix of both manual and automatic stores 
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which proves that we don’t need a highly automated, 
fully mechanical system to make a DT or use AI. Table 
1 summarizes the finding of this literature review. 

4.1. What are the AI techniques most used for 
Warehouse management under the DT 
paradigm?   

4.1.1. Artificial Intelligence 

ML has been used either for classification or 
forecasting. For classification, neural networks (NN) 
are abundantly exploited. Melesse et al. (2022) used 
convolutional NN to analyze thermal images of 
bananas to monitor fruit freshness in stores. Zhan et 
al. (2022) used a sparse autoencoder to differentiate 
abnormal stationary in cold storage warehouses. 
Corneli et al. and Hayward (2019) both used YOLOv2 
for object detection, allowing inventory and asset 
inspection applications in buildings. Wu et al. (2022) 
withdrew by long short-term memory (LSTM) 
network (deep learning) dependencies inside time 
series of the received signal to estimate locations 
online. In the same manner, Zhao et al. (2021) used the 
same resource with k-nearest neighbor to make 
indoor location estimation for warehouse safety 
management. Bányai et al. (2019) utilized Black Hole 
Optimization-Based Clustering to group the available 
supply demands based on time frame related objective 
function. 

On the other hand, forecasting applications provide 
a wider range of ML technics. Neural networks still 
take the lead, having been used trice. Leung et al. 
(2022) used a neuro-fuzzy model (a combination of 
NN and fuzzy logic) to forecast the future arrivals of 
PI-SKUs. Xiuyu & Tianyi (2018) used backpropagation 
NN to make sales predictions. Other ML technics 
comprise Gradient-boosting decision tree (GDBT) to 
monitor anomaly detection and maintenance (Huang 
et al., 2021), proximal policy optimization (PPO) to 
make inventory predictions (Kegenbekov & Jackson, 
2021). Wang et al. (2020) used a combination of both 
time-weighted linear regression method (TWMLR) 
and Non-dominated Sorting Genetic Algorithm 
(NSGA-II) to predict the remaining time of processes 
and find an optimal allocation of trolleys for the 
material handling tasks. DT could curate multiple 
algorithms in the same platform and subject problems 
to this set of optimization tools. Gao et al. (2022) 
implemented multiple ML techniques, in the 
“algorithm center”. The appropriate algorithm is 
selected to match the problem from the Algorithm 
Center. This architecture thus allows for multiple 
adaptations and solutions, which ensures optimal 
problem-solving.  

SL is the most used ML method having been used in 
twelve papers, either on its own or combined with 
other types of learning. UL was used trice, while RL 
was only used once. There’s also a big interest in deep 

learning, namely deep neural networks, for it presents 
more computational power and is very compatible 
with the emergence of big data (Corneli et al., 2019; 
Kegenbekov & Jackson, 2021; Melesse et al., 2022; 
Zhan et al., 2022). These algorithms were either 
approved through tests and are envisioned to be used 
in a DT framework (Hayward, 2019; Kegenbekov & 
Jackson, 2021; Melesse et al., 2022; Xiuyu & Tianyi, 
2018; Bányai et al., 2019) or are already applied in a 
case study presenting a united DT/AI embedded 
system.  

4.1.2. Data 

Except for Kegenbekov & Jackson, (2021) and Bányai et 
al. (2019), all DTs and AI/ML algorithms were trained 
using real product data. They are also the only ones 
that discussed the disadvantages of running AI 
algorithms in a simulate environment. Using 
simulated data and environments might lead to 
unexpected results. RL is known for finding loop holes 
in virtual models, in this case, it terminated ordering 
additional inventory closer to the end of the 
simulation to minimize holding costs. 

Handler data is primarily used for online location 
tracking. Environmental data, though heavily talked 
about in the literature, is not subject to much 
application. Temperature plays a heavy role in safety 
monitoring (Zhan et al., 2022).  Minerva et al. (2021) 
states that we can exploit all data types for object 
identification through AI. The DT develops auditory 
and visual signatures based on all kinds of data 
collected to identify changes in an environment and 
act accordingly.  

A common goal among all DT adaptations in 
literature is to access information in real-time,  this is  
often not the case for real life implementations. Real-
time monitoring is necessary for safety applications 
requiring immediate responses (Zhan et al., 2022). 
Leng et al. (2021) and Leung et al. (2022) opted for 
more realistic, periodic, and synchronized data 
updates, which are both efficient and effective for 
their applications. This proves that real-time data 
acquisition is not always necessary depending on the 
level of abstraction and the objective. 

4.2. How to ensure DT characteristics through AI ? 

There is no standard mold for a DT. Before the 
clarifications of Kritzinger et al. (2018) and Fuller et al. 
(2020), the term DT was used interchangeably with 
simulation or cyber-physical systems. Even now, this 
is still the case for some studies that reduce DT’s 
potential to simply be a CAD model. AI Programs are 
becoming fundamental to the proposed models and 
frameworks of DTs. Almost all the studied papers 
developed models and architectures that use ML in the 
DT platform or cloud. Otherwise, these algorithms are 
closely linked to the virtual counterpart in order to 
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Table 1. Overview of literature regarding digital twins and related concepts 

DM, DS: digital model, shadow, FL:  Fuzzy logic, GA: genetic algorithms, CA: context awareness, FLM: full lifecycle management, Auto: autonomy,  
CE: continuous evolving, ED, PD, HD: environmental, product and handler data, R: real, S: simulated, IS: Information system, 

compare the results of the AI program with the 
expected status recorded in the DT’s database (Corneli 
et al., 2019; Hayward, 2019). 

4.2.1. Context awareness 

AI objectives, namely classification, and forecasting, 
go beyond data collection by IoT and structuring. They 
were used for the elaboration of contextual 
information that DTs act on.  Melesse et al. (2022) 
used image classification to define banana quality. 
Depending on the results, the DT can decide on the 
actions to be taken moving forward: preserve, put on 
sale or donate the goods before they are borderline 
inconsumable. Leung et al. (2022) used machine 
learning to predict order arrivals within the hour, 
allowing the system to organize the total inbound 
synchronization strategy accordingly. RL is by nature 
to a degree context-aware. The set of rules and 
interactions from the environment makes for a 
predefined interactive, situational setting. Neural 
networks were used to detect abnormal stationary, 
regarded as dangerous when warehouse operations 
requiring urgent interventions, from false alarms. 
Wang et al., (2020)  used AI to predict the remaining 
processing times.  The results are compared to the 
current status to optimize the material handling 
method proactively. 

4.2.2. Autonomy 

When it comes to autonomy, DT adaptations still 
require (and depend on) human presence in the loop to 
procure modifications in the physical system (by 
requesting a change or through notifications). 
Autonomous control and data acquisition has been  

facilitated through IoT and the interconnectivity of the 
DT with other software in the cloud, namely with 

information systems (Leng et al., 2021; Melesse et al., 
2022; Wang et al., 2020; Zhan et al., 2022). Through AI 
DT are an even more pertinent, perceptive, and to a 
degree autonomous decision-making systems, in the 
sense that it could even exceed human perception in 
finding optimal solutions. But when it comes to acting 
on solutions, the literature is still lacking.  Hribernik et 
al. (2021) defined autonomy from an architecture 
point view, where the DT is made of multiple 
autonomous, interconnected, singular sub-systems. 
This usually influences the DT's architecture to make 
it able to access data singularly if need be.  

4.2.3. Continuous evolving 

Warehouses are fast-evolving environments, prone to 
daily if not hourly drastic changes. DTs need to adapt 
to these changes and allow an accurate representation 
regardless of the degree of abstraction. The structure 
of the DT should allow for a continuously evolving 
adaptation of the system so as not to make false 
predictions and flawed hypotheses. This is still not 
very explored in the literature. When it comes to 
adaptive DTs, collected data should be reintroduced 
into the cloud to reevaluate the virtual counterpart 
(Huang et al., 2021; Zhan et al., 2022).  Huang et al. 
(2021) created two data streams, one that goes to the 
edge layer which allows high performance data 
processing and deployment of the ML algorithm (real 
time application) and the second goes through the 
edge for preprocessing and feature extraction and 
then to the cloud to reevaluate and update the model 
when necessary. This also makes the DT aware of the 
contextual changes in the warehouse. Zhan et al. 
(2022) stated having designed an online self-adapting 
mechanism to ensure that the model is in line with the 
environmental changes of the warehouse. Zhao et al. 
(2021) used a closed-loop structure that permanently 

 
ML Other AI 

technics 
Level of DT DT characteristics Data types Data source Warehouse activities 

SL UL RL FL GA DM DS DT CA FLM Auto CE Nature ED PD HD IS IoT 
Manuel 

input Arrival 
Put 

away Storage Picking Preparation Shipping 

Melesse et al. 
(2022) X       X X (X) (X)  R  X  X X X   X    

Pan et al. (2022)        X  (X) (X)               

Leung et al. (2022) X   X    X X    S  X X X X  X  X X  X 
Huang et al. (2021) X      X     X R  X   X        

Leng et al. (2021)       X  X  (X)  R  X  X X   X X    

Kegenbekov et al. 
(2021) 

  X    (X)  X    S  X       X    

Zhan et al. (2022)  X      X X  (X) X R X  X X X   X X X   

Zacharaki et al. 
(2021) 

       X                  

Minerva et al. 
(2021) 

X X      X      X            

Sacks et al. (2020)        X                  

Hayward & 
Portugal (2019) 

X 
X         X       R  X   X X   X    

Corneli et al. (2019) X     X       R  X X X X X   X    

Xiuyu & Tianyi 
(2018) 

X      (X)      R  X  X X  X      

Wang et al. (2020) X       X   X X  X  R  X  X X   X  X   

Gao et al. (2022) X    X   X X  X X R  X  X X   X X X   

Wu et al. (2022) X       X X  X X R  X  X X   X     

Zhao et al. (2021) X       X X   X R X X X X X    X    

Bányai et al. (2019)  X      X X  X  S  X X X X   X  X   
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updates the datasets and regenerates the programs 
following gene structure. From this perspective, the 
algorithms are self-conscious and self-modifying. 

4.2.4. Full lifecycle management 

None of the applications take into consideration the 
full lifecycle of the warehouses. The scope of the 
studies analyzed is mainly focused on the middle of 
life. Zacharaki et al. (2021) present through the 
RECLAIM project a framework that covers the whole 
lifecycle of the equipment. Their objective is to 
elongate through DTs the MOF. During that time and 
through data collection and analysis, we can prescribe 
refurbishment and remanufacturing actions on the 
machines, allowing to restore the functionality of the 
product or a part of it to an “as-new” state and 
optimize EOL. 

5. Discussion and conclusion 

ML technics have been highly applied in this 
literature review. Few articles that have not used AI 
explicitly still consider it as an important part of their 
future studies (Pan et al., 2022; Zacharaki et al., 2021). 
AI can help DTs reach maturity and wisdom 
throughout the entire product lifecycle by playing two 
roles :  

• Reconstruction: AI can be an important tool 
for the reconstruction process; the process of 
creating and revisiting the virtual 
representation based on the raw data from the 
sensors;  

• Application: Once the Digital Twin is 
reconstructed, another AI algorithm can be 
applied to the semantically rich 
representation of the Digital Twin to support 
the business goals (Slama, 2021). 

Intralogistics are lightly covered in research 
relating to WDTs. None of the papers selected worked 
on optimizing package preparation (packaging, 
accumulation, sorting …) and shipping. These 
activities present a research gap related to co-packing, 
prospective package preparations, testing the quality 
of packages based on clients appreciation, and finding 
links between the packaging and the shipping method. 

 DT has often been described as the perfect replica, 
being able to copy every change in the physical twin 
and anticipate it. This futuristic ambition is not very 
doable because we can neither have real-time 
connectivity yet (Fuller et al., 2020), nor can we 
capture all the states and minimal changes of a 
system. Such declarations presume that we have 
sensors everywhere to capture every shift in the air 
and omits connectivity and simulation times. This is at 
once impossible, costly, and unnecessary. With a 
certain level of abstraction and operational 
synchronization, it should be possible to effectively 
design and manage a stochastic WDT. It is important 
to keep realistic expectations when discussing DTs and 

AI. For the most part, ML algorithms are black box 
models that we do not fully comprehend the workings 
of. This can make the technic untrustworthy. 
However, this might actually help us discover patterns 
that we did not consider in the first place. Pan et al. 
(2022) discussed the field of data-centric engineering, 
leveraging the best of both physics, simulation, and 
data science. This helps ground AI and makes a little 
more predictable. AI has also proven Itself 
consequential to identifying contextual information 
and continuous evolving. Another potential research 
gap is the use of continual learning (CL) in a DT 
framework (Hashash et al., 2022). CL is in fact a 
branch of machine learning representing the 
capability of a model to continue evolving and 
regenerating from a data stream. this is also a degree 
of autonomy since it no longer requires human 
intervention. Nevertheless, autonomy is still poorly 
covered In scientific literature. Having autonomous 
systems presents more safety hazards in the workshop 
since we lose control over what and when actions 
happen. 

DTs have been associated with product life cycle 
management since the very beginning. The first time 
the notion was ever explicitly used is by Grieves, 
during a PLM lecture (CoBuilder, 2018). None of the 
papers covered the entire lifecycle generally or focused 
on the end of life. None of the applications use 
artificial intelligence or simulation to model the 
beginning of life of a warehouse, revamping and 
redesigning the building, or discuss what would 
become of the warehouse by the end of its life.   

IoT aside, warehouse operations can easily reach a 
huge amount of records and data used for 
management or assurance purposes. Tufano et al. 
(2022) used machine learning models to predict 
warehouse components design based on data and 
metrics collected through the life on a another storage 
system. The algorithms could be used to assess the 
effectiveness of the current, up and running 
warehouse to either duplicate or avoid making similar 
mistakes.  Which brings us back to the ultimate 
research question of all time : What came first, the 
digital twin or the physical system?  

If we are to consider digital twins as a simulation 
based concept, then making of the digital twin doesn’t 
necessarily need the physical counterpart. It is 
irrelevant whether the real counterpart already exists 
in the physical world or is about to exist.( 
“Gesellschaft für Informatik (GI): Digitaler Zwilling”). 
Prior simulation will test if the soon to be warehouse 
can actually handle the stock, if resources are enough 
for ramp up, to test if we can get away with a 
traditional manual warehouse or if we ought to invest 
in a mechanical one … All of these previous attributes 
are to be consolidated and evaluated, If not changed as 
both twins grow and evolve. Figure 2 showcases the 
warehouse twins evolution through time. This model 
was inspired by Sacks et al. (2020) representation of 
the lifecycle of the twins for building construction. 
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The model ensures information saving and visibility in 
a structured and evolutive configuration. Our vision 
for WDT will chronologically follow the natural 

evolution detailed in figure 2; From a digital model to 
a digital shadow and lastly, a twin. The concept is to be 
constructed based on simulation software allowing us

 
Figure 2. Full lifecycle management of WDT based on (Sacks et al., 2020)

to control the environment and run experiments in the 
first place, import datasets, and use machine learning 
based optimization and forecasts depending on the 
problematic at hand secondly. Also depending on the 
problem, we need to define the degree of 
synchronization required for the optimization to make 
sense. This way the “digital shadow” will be equipped 
with  automatic data exchange and become a twin. 

This literature review showcase the ever growing 
potential of both AI and DT to optimize warehousing. 
The algorithms are utilized in different ways to ensure 
WDT characteristics and potential. And on the other 
hand DT presents a mature and sophisticated and 
interactive modeling environment for AI. 
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