Simulation of terahertz photonic integrated phased array antenna

  • Sergey Seliverstov ,
  • Sergey Svyatodukh,
  • Aleksey Prokhodtsov,
  • Gregory Goltsman
  • a,b,c,d  Moscow State Pedagogical University, 1/1 Malaya Pirogovskaya Str., Moscow, 119991, Russia
  • b,d National Research University Higher School of Economics, 34 Tallinskaya st., Moscow, 123458, Russia
Cite as
Seliverstov S., Svyatodukh S., Prokhodtsov A.and Goltsman G. (2022).,Simulation of terahertz photonic integrated phased array antenna. Proceedings of the 34th European Modeling & Simulation Symposium (EMSS 2022). , 025 . DOI: https://doi.org/10.46354/i3m.2022.emss.025

Abstract

A rapid development of wireless technologies is observed over the last years. This is due to the growing need of increasing the data transfer rate between mobile devices. To achieve this goal, a transition to higher frequencies is required. In this sense, the terahertz (THz) range seems to be very promising. The THz communication systems should be equipped with devices capable of rapidly controlling the output radiation pattern. One of the most hopeful approaches is the use of phased array antennas. This paper presents the results of simulations of phased array antenna on a platform of metamaterial silicon with cylindrical perforations. For the first time, the dependence of the radiation pattern of a phased antenna array on the phase difference between antenna elements at a frequency of 150 GHz was simulated. The dimensions of perforations are much smaller than the wavelength in the material. The local heating of the substrate was chosen as the phase adjustment method. The obtained results confirm the possibility of practical implementation of the proposed concept for the development of widely used new generation devices with higher data transfer rate.

References

  1. AzimBeik,M.,Moradi, G., and Shirazi,R.S.(2018).Graphene-based switchedl in ephase shifter inTHz band. Optik, 172:431–436.
  2. Boronin, P., Petrov, V., Moltchanov, D., Koucheryavy, Y.,
    and Jornet, J. M. (2014). Capacity and throughput analysis of nanoscalemachine communication through transparency windows in the terahertz band. Nano Communication Networks, 5(3):72–82
  3. Chaccour, C. and Saad, W. (2020). On the ruin of age of information in augmented reality over wireless terahertz
    (THz) networks. IEEE Global Communications Conference, pages 1–6
  4. Corre, Y., Gougeon, G., Dore, J., Bicais, S., Miscopein, B., Saad, M., Palicot, J., and Bader, F. (2019). Sub-THz spectrum as enabler for 6G wireless communications up to 1 Tbit/s. 6G Wireless Summit.
  5. Elmanova, A., Elmanov, I., Kovalyuk, V., An, P., Chulkova, G., and Goltsman, G. (2021). Integrated optical gas sensor based on O-ring resonator and loop waveguide mirror on silicon nitride platform. Conference Paper.
  6. Gao, W., Yu, X., Fujita, M., Nagatsuma, T., Fumeaux, C., and Withayachumnankul, W. (2019). Effectivemedium-cladded dielectric waveguides for terahertz waves. Optics Express, 27(26):38721–38734
  7. Guo, K., Zhang, Y., and Reynaert, P. (2018). A 0.53-THz Subharmonic Injection-Locked Phased Array With 63-
    uW Radiated Power in 40-nm CMOS. IEEE Journal of Solid-State Circuits, 54(2):380–391
  8. Ji, Y., Fan, F., Xu, S., Yu, J., and Chang, S. (2019). Manipulation enhancement of terahertz liquid crystal phase
    shifter magnetically induced by ferromagnetic nanoparticles. Nanoscale, 11(11):4933–4941
  9. Scardapane, S., Fierimonte, R., Di Lorenzo, P., Panella, M., and Uncini, A. (2016). Distributed semi-supervised support vector machines. Neural Networks, 80:43–52.
  10. Kossey, M. R., Rizk, C., and Foster, A. C. (2018). End-fire silicon optical phased array with half-wavelength spacing. APL Photonics, 3(1):011301
  11. Krabbe, A. (2000). SOFIA telescope. International Society for Optics and Photonics, 4014:276–281
  12. Leng, L. M., Shao, Y., Zhao, P. Y., Tao, G. F., Zhu, S. N., and Jiang, W. (2021). Waveguide superlattice-based optical
    phased array. Physical Review Applied, 15(1):014019
  13. Lin, X., Wu, J., Hu, W., Zheng, Z., Wu, Z., Zhu, G., Xu, F.,  Jin, B., and Lu, Y. (2011). Self-polarizing terahertz liquid
    crystal phase shifter. Aip Advances, 1(3):032133.
  14. Liu, Y., Yang, J., and Yao, J. (2002). Continuous true-timedelay beamforming for phased array antenna using a
    tunable chirped fiber grating delay line. IEEE Photonics Technology Letters, 14(8):1172–1174.
  15. Lu, P., Steeg, M., Kolpatzeck, K., Dulme, S., Khani, B., Czylwik, A., and Stohr, A. (2018). Photonic assisted beam
    steering for millimeter-wave and THz antennas. 2018 IEEE Conference on Antenna Measurements and Applications (CAMA), pages 1–4.
  16. Malekabadi, A., Charlebois, S. A., Deslandes, D., and Boone, F. (2014). High-resistivity silicon dielectric ribbon
    waveguide for single-mode low-loss propagation at F/Gbands. IEEE Transactions on Terahertz Science and Technology, 4(4):447–453.
  17. Nyman, L., Andreani, P., Hibbard, J., and Okumura, S. K.
    (2010). ALMA science operations. Observatory Operations: Strategies, Processes, and Systems III, 7737:77370G.
  18. Smirnov, A., Baryshev, A., Bernardis, P., Vdovin, V., Goltsman, G., Kardashev, N., Kuzmin, L., Koshelets, V., Vystavkin, A., Lobanov, Y., Ryabchun, S., Finkel, M., and Khokhlov, D. (2012). The current stage of development
    of the receiving complex of the Millimetron space observatory. Radiophysicsand quantum electronics, 54(8):557–
    568
  19. Subashiev, A. and Luryi, S. (2006). Modal control in semiconductor optical waveguides with uniaxially patterned
    layers. Journal of lightwave technology, 24(3):1513.
  20. Vogt, D. W., Jones, A. H., and Leonhardt, R. (2018). Thermal tuning of silicon terahertz whispering-gallery mode
    resonators. Applied Physics Letters, 113(1):011101
  21. Wang, Z., Dong, G., Yuan, S., Chen, L., Wu, X., and Zhang, X. (2002). Voltage-actuated thermally tunable on-chip
    terahertz filters based on a whispering gallery mode resonator. Optics letters, 44(19):4670–4673
  22. Yan, S., Zhu, X., Frandsen, L. H., Xiao, S.and Mortensen, N. A., Dong, J., and Ding, Y. (2017). Slow-lightenhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nature communications, 8(1):1–8
  23. Yang, J., Cai, C., Yin, Z., Xia, T., Jing, S., Lu, H., and Deng, G. (2018). Reflective liquid crystal terahertz phase shifter
    with tuning range of over 360°. IET Microwaves, Antennas and Propagation, 12(9):1466–1469
  24. Yu, X., Sugeta, M., Yamagami, Y., Fujita, M., and Nagatsuma, T. (2019). Simultaneous low-loss and low-dispersion in a photonic-crystal waveguide for terahertz communications. Applied Physics Express, 12(1):012005.
  25. Zhang, C., Ota, K., and Jia, J., . D. M. (2018). Breaking the blockage for big data transmission: Gigabit road communication in autonomous vehicles. IEEE Communications Magazine, 56(6):152–157.