Multimode interference splitter and Mach-Zehnder interferometer based on silicon metamaterial for subTHz range

  • Sergey Svyatodukh ,
  • Sergey Seliverstov,
  • Alexey Prokhodtsov,
  • d Ilia Venediktov,
  • Margaret Polyakova,
  • Galina Chulkova,
  • Gregory Goltsman,
  • a,b,c,d,g  Moscow State Pedagogical University, 1/1 Malaya Pirogovskaya Str., Moscow, 119991, Russia
  • a,e,f,g National Research University Higher School of Economics, 34 Tallinskaya st., Moscow, 123458, Russia
Cite as
Svyatodukh S., Seliverstov S., Prokhodtsov A., Venediktov I., Polyakova M., Chulkova G., and Goltsman G. (2022).,Multimode interference splitter and Mach-Zehnder interferometer based on silicon metamaterial for sub-THz range. Proceedings of the 34th European Modeling & Simulation Symposium (EMSS 2022). , 026 . DOI: https://doi.org/10.46354/i3m.2022.emss.026

Abstract

THz photonics range is a rapidly developing field of science with many practical applications in medicine, telecommunications, imaging, and others. From practical point of view many applications requires compact and multifunctional solutions, with a property of scalability. Such as in visible and infrared ranges photonic integrated circuits could solve given problem. In this work we are working on enlarging element base of purely silicon THz photonic integrated circuits. We consider 1x2 splitter based on multimode interferometer and its application for Mach-Zehnder interferometer on silicon integrated platform. Both devices on their own will find a huge number of applications in the THz range.

References

  1. Zhou J. et al. Temperature dependent optical and dielectric properties of liquid waterstudied byterahertz time-domain spectroscopy //AIPAdvances.–2019.–Т. 9.–№. 3.–С. 035346.
  2. Raddo T. R. et al. Transition technologies towards 6G networks //EURASIP Journal on Wireless Communications and Networking. – 2021. – Т. 2021. – №. 1. – С. 1-22.
  3. Chen T. et al. Analysis of Intermolecular Weak Interactions and Vibrational Characteristics for Vanillin and Ortho-Vanillin by Terahertz Spectroscopy and Density Functional Theory //IEEE Transactions on Terahertz Science and Technology. – 2020.
  4. Hou L. et al. Probing trace lactose from aqueous solutions by terahertz time-domain spectroscopy Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. – 2021. – Т. 246. – С. 119044.
  5. Hao Y. et al. Recent progress of integrated circuits and optoelectronic chips //Science China Information Sciences. – 2021. – Т. 64. – №. 10. – С. 1-33
  6. Kazanskiy N. L., Butt M. A., Khonina S. N. Silicon photonic devices realized on refractive index engineered subwavelength grating waveguides-A review //Optics & Laser Technology. – 2021. – Т. 138. – С. 106863
  7. Gao W. et al. Effective-medium-cladded dielectric waveguides for terahertz waves //Optics Express. – 2019. – Т. 27. – №. 26. – С. 38721-38734.
  8. Yu X. et al. Simultaneous low-loss and low-dispersion in a photonic-crystal waveguide for terahertz communications //Applied Physics Express. – 2019. – Т. 12. – №. 1. – С. 012005.
  9. Headland D. et al. Unclad Microphotonics for Terahertz Waveguides and Systems // Journal of Lightwave Technology. – 2020. – Т. 38. – №. 24. – С. 6853-6862
  10. Hu J. R., Li J. S. Ultra-compact 1× 8 Channel terahertz Wave Power Splitter //Journal of Infrared, Millimeter, and Terahertz Waves. – 2016. – Т. 37. – №. 8. – С. 729-736.
  11. Reichel K. S., Mendis R., Mittleman D. M. A broadband terahertz waveguide T-junction variable power splitter // Scientific reports. – 2016. – Т. 6. – №. 1.– С. 1-6
  12. Krokhin A. A., Halevi P., Arriaga J. Long-wavelength limit (homogenization) for two-dimensional photonic crystals //Physical Review B. – 2002. – Т. 65. – №. 11. – С. 115208.
  13. Soldano L. B., Pennings E. C. M. Optical multi-mode interference devices based on self-imaging: principles and applications //Journal of lightwave technology. – 1995. – Т. 13. – №. 4. – С. 615-627.