Parametric model of a dielectric rod antenna array for terahertz applications 

  • Anatoliy Prikhodko ,
  • Terentiy Yaropolov ,
  • Alexander Shurakov ,
  • Gregory Gol’tsman
  • a,b,c,d  Moscow Pedagogical State University, 1/1 Malaya Pirogovskaya Str., Moscow, 119991, Russia 2National Research University Higher School of Economics, 20 Myasnitskaya ulitsa, Moscow, 101000, Russia 
Cite as
Prikhodko A., Yaropolov T., Shurakov A., and Gol'Tsman G. (2022).,Parametric model of a dielectric rod antenna array for terahertz applications. Proceedings of the 34th European Modeling & Simulation Symposium (EMSS 2022). , 031 . DOI: https://doi.org/10.46354/i3m.2022.emss.031

Abstract

Mastering of the terahertz frequency band is attractive for numerous practical applications. Fabrication tolerances of widely used computer numerical control machining result in vital increase of input optics losses of active waveguide components at frequencies beyond 1 THz. This issue can be resolved if conventional hollow metallic waveguide technology is replaced by that making use of wave propagation in low-loss dielectric media. In this paper we report on the development of parametric model of a terahertz dielectric rod antenna array. Both analytic and numeric analysis for variety of the antenna array geometries are provided. The developed parametric model can be used to rigidly construct the dielectric rod antenna array with desired beam parameters at any frequency in the terahertz band if the antenna form factor is fixed and Si platform is used. We believe that our findings are of practical importance to terahertz photonics engineers. 

References

  1. Al-Daffaie, S., Jumaah, A. J., Rubio, V. L., and Kusserow, T. (2022). Design and implementation of a terahertz lens-antenna for a photonic integrated circuits based thz systems. Scientific reports, 12(1):1–7. 
  2. Balanis, C. A. (1997). Antenna theory: analysis and design. John wiley & sons. 
  3. Gibson, W. C. (2021). The method of moments in electro magnetics. Chapman and Hall/CRC. 
  4. James, J. R. (1972). Engineering approach to the design of tapered dielectric-rod and horn antennas. Radio and Electronic Engineer, 42(6):251–259. 
  5. Jin, J.-M. (2015). The finite element method in electromag netics. John wiley & sons. 
  6. Mukherjee, A. K., Xiang, M., and Preu, S. (2021). Broad band terahertz photonic integrated circuit with inte grated active photonic devices. Photonics, 8(11):492. 
  7. Schneider, J. B. (2010). Understanding the finite-difference time-domain method. School of electrical engineering 
  8. Shiau, Y. (1976). Dielectric rod antennas for millimeter- wave integrated circuits (short papers). IEEE Transac-
    tions on Microwave Theory and Techniques, 24(11):869– 872.
  9. Tesmer, H., Reese, R., Polat, E., Nickel, M., Jakoby, R., and Maune, H. (2019). Fully dielectric rod antenna arrays
    with integrated power divider. Frequenz, 73(11-12):367–377.
  10. Withayachumnankul, W., Fujita, M., and Nagatsuma, T. (2018a). Integrated silicon photonic crystals toward
    terahertz communications. Advanced Optical Materials, 6(16):1800401.
  11. Withayachumnankul, W., Yamada, R., Fujita, M., and Na gatsuma, T. (2018b). All-dielectric rod antenna array for terahertz communications. APL Photonics, 3(5):051707.