Fusion welding thermal simulation in corrugated steel for one-way slabs 

  • J. Ferreiro-Cabello ,
  • E. Fraile-Garcia,
  • E. Fernández González,
  • C. Gonzalez Gonzalez,
  • E. Jimenez Macias
  • a,b,c,d  University of La Rioja, Luis de Ulloa 4, Logroño (La Rioja), 26004, Spain 
Cite as
Ferreiro-Cabello J., Fraile-Garcia E., Fernández González E., Gonzalez-Gonzalez C., and Jimenez-Macias E. (2022).,Fusion welding thermal simulation in corrugated steel for one-way slabs. Proceedings of the 34th European Modeling & Simulation Symposium (EMSS 2022). , 033 . DOI: https://doi.org/10.46354/i3m.2022.emss.033

Abstract

The objective of this work is to carry out a study on fusion welding by modifying different variables: pressures, intensity and time. This process will be used for the elaboration of rebar in reinforced concrete structures such as unidirectional slabs. Currently, the corrugated steel bars used in the construction sector are usually welded using MIG (Metal Inert Gas) welding. This welding emits gases that are harmful to the environment and to welders. For this reason, an attempt is made to find a better alternative for rebar welding. After studying the current welding methods, it was decided to test the effectiveness of electric resistance welding because it is a cleaner weld, the main reason being that it does not use material or filler gases. The methodology followed to verify the effectiveness of the new alternative consists of the elaboration of several test pieces combining corrugated steel bars of different diameters joined through spot welding, carried out by electric resistance welding. 
The welding process is recorded with a thermographic camera, to obtain the maximum temperature during said process, of all the combinations studied. To determine if welding with the new alternative is thermally feasible. The results allow to determine that the welding is feasible with the new alternative. All the experiments are validated by a finite-elements simulation, and, once the model is validated, more range of values are obtained using simulation without price increase. 

References

  1. E. Fraile-García, J. Ferreiro-Cabello, E. Sodupe-Ortega, and A. Sanz-Garcia, “Combined assessment of the environmental, economic and social impacts of structural solutions for residential construction,” Inf. la Construcción, vol. 67, no. 539, p. e101, 2015. 
  2. J. Ferreiro Cabello, E. Fraile Garcia, E. Martinez de Pison, and E. Jimenez Macias, “Structural alternatives with one way slab in residential buildings,” DYNA, vol. 90, no. 3, pp. 491–502, 2015. 
  3. E. Fraile-Garcia, J. Ferreiro-Cabello, A. Pernia-Espinoza, and F. J. Martinez-de-Pison, “Technical-economic assessment of redesigned reinforced concrete pre-slabs: Incorporating corrugated cardboard,” Struct. Concr., vol. 20, no. 4, 2019. 
  4. E. Fraile-Garcia, J. Ferreiro-Cabello, F. J. Martínez De Pison, and A. V. Pernia-Espinoza, “Effects of design and construction on the carbon footprint of reinforced concrete columns in residential buildings,” Mater. Constr., vol. 69, no. 335, 2019. 
  5. E. Fraile-Garcia, J. Ferreiro-Cabello, D. S. Prado, and E. Jiménez, “Assessment and Impact of CO2 Emissions Attributable to Rebar Used in Building Columns to Withstand Climatic Loads,” in 32nd European Modeling & Simulation Symposium, 2020, pp. 376–386
  6. Pérez de la Parte, M., Espinel Hernández, A., Sánchez Orozco, M. C., Sánchez Roca, A., Jiménez Macías, E., Blanco Fernández, J., & Carvajal Fals, H. (2022). Effect of zinc coating on delay nugget formation in dissimilar DP600-AISI304 welded joints obtained by the resistance spot welding process. International Journal of Advanced Manufacturing Technology, 120(3-4), 1877-1887. doi:10.1007/s00170-022-08849-2 
  7. Izquierdo, D. R., Álvarez, M. E. G., Roca, A. S., Orozco, M. S., Fernandez, J. B., Fals, H. C., & Macias, E. J. (2020). Stability analysis of the tig-mig hybrid welding process based on digital signal processing. Paper presented at the 32nd European Modeling and Simulation Symposium, EMSS 2020, 410-415. doi:10.46354/i3m.2020.emss.059 
  8. Veitía, B. D. R., Hernández, A. E., Villarinho, L. O., Orozco, M. S., Roca, A. S., Fals, H. C., & Macias, E. J. (2020). Deep learning for quality prediction in dissimilar spot welding DP600-AISI304, using a convolutional neural network and infrared image processing. Paper presented at the 32nd European Modeling and Simulation Symposium, EMSS 2020, 393-399. doi:10.46354/i3m.2020.emss.057 
  9. de la Parte, M. P., Azofra, J. C., Fals, H. D. C., Roca, A. S., Orozco, M. C. S., & Macías, E. J. (2019). A new way to predict the mechanical properties of friction stir spot welding for al-cu joints by energy analysis of the vibration signals. International Journal of Advanced Manufacturing Technology, 105(1-4), 1823-1834. doi:10.1007/s00170-019-04396-5 
  10. Colmenero, A. N., Orozco, M. S., Macías, E. J., Fernández, J. B., Muro, J. C. S. -., Fals, H. C., & Roca, A. S. (2019). Optimization of friction stir spot welding process parameters for al-cu dissimilar joints using the energy of the vibration signals. International Journal of Advanced Manufacturing Technology, 100 (9-12), 2795-2802. doi:10.1007/s00170-018-2779-y 
  11. Jiménez-Macías, E., Sánchez-Roca, A., Carvajal-Fals, H., Blanco-Fernández, J., & Martínez Cámara, E. (2014). Wavelets application in prediction of friction stir welding parameters of alloy joints from vibroacoustic ANN-based model. Abstract and Applied Analysis, 2014 doi:10.1155/2014/728564 
  12. Macías, E. J., Roca, A. S., Fals, H. C., Fernández, J. B., & Muro, J. C. S. -. (2013). Neural networks and acoustic emission for modelling and characterization of the friction stir welding process. [Emisión Acústica y Redes Neuronales para Modelado y Caracterización del Proceso de Soldadura por Fricción Agitación] RIAI - Revista Iberoamericana De Automatica e Informatica Industrial, 10(4), 434-440. doi:10.1016/j.riai.2013.09.003