Structural comparison between two alternatives for a hydroelectric power plant building 

  • J.Los-Santos Ortega ,
  • G. Anoz Varea,
  • C. Gonzalez-Gonzalez,
  • J. Ferreiro Cabello,
  • E. Jimenez Macias
  • a,b.c.d.e University of La Rioja, Luis de Ulloa 4, Logroño (La Rioja), 26004, Spain 
Cite as
Ortega J.L.S, Gerardo Anoz Varea, Gonzalez-Gonzalez C., Ferreiro-Cabello J., and Jimenez-Macias M. (2022).,Structural comparison between two alternatives for a hydroelectric power plant building. Proceedings of the 34th European Modeling & Simulation Symposium (EMSS 2022). , 034 . DOI: https://doi.org/10.46354/i3m.2022.emss.034

Abstract

This paper deals with the design and modelling of a hydroelectric power plant building, considering the most general characteristics that this type of building should include, such as bridge cranes, space for the repair of a turbogenerator set, etc.,. Once its dimensions are determined, this problem is solved by means of two structures that use different structural materials. The main contribution of this paper is to obtain a detailed comparison between both alternatives as well as the methodology to apply this simulation to any other hydroelectric power plant. The first one is a model building with a metal structure. The second alternative would be to design the plant with a reinforced concrete structure. In both alternatives, strength and safety calculations are justified in the face of environmental actions such as those identified by other elements, thus ensuring the structural integrity of the power plant. Subsequently, an analysis is carried out of the results obtained in terms of both economic and environmental criteria, the latter by means of a Life Cycle Analysis (LCA). The implementation of one alternative over the other represents a difference of 10.65% of the budget. In the life cycle analysis comparison, there are greater differences in terms of impacts, with values ranging from 17.47% in some indicators to 35.15% in others. 

References

  1. Abouhamad, M., & Abu-Hamd, M. (2020). Life Cycle Environmental Assessment of Light Steel Framed Buildings with Cement-Based Walls and Floors. Sustainability, 12(24), 10686. https://doi.org/10.3390/su122410686 
  2. Cabello, J. F., García, E. F., Cámara, E. M., & Macías, E. J. (2015). Analysis of thermal and acoustic performance in residential buildings with one way slab depending on the rib width and compression layer. Paper presented at the 3rd International Workshop on Simulation for Energy, Sustainable Development and Environment, SESDE 2015, P160-P165. 
  3. de Bortoli, A., Bouhaya, L., & Feraille, A. (2020). A life cycle model for high-speed rail infrastructure: environmental inventories and assessment of the Tours-Bordeaux railway in France. The International Journal of Life Cycle Assessment, 25(4), 814–830. https://doi.org/10.1007/s11367-019-01727-2 
  4. Demertzi, M., Silvestre, J., Garrido, M., Correia, J. R., Durão, V., & Proença, M. (2020). Life cycle assessment of alternative building floor rehabilitation systems. Structures, 26, 237–246. https://doi.org/10.1016/j.istruc.2020.03.060 
  5. Filho, M. V. A. P. M., da Costa, B. B. F., Najjar, M., Figueiredo, K. V., de Mendonça, M. B., & Haddad, A. N. (2022). Sustainability Assessment of a Low-Income Building: A BIM-LCSA-FAHP-Based Analysis. Buildings, 12(2), 181. https://doi.org/10.3390/buildings12020181 
  6. Fraile-Garcia, E., Ferreiro-Cabello, J., & Jimenez, E. (2018). Modeling and environmental assessment of structural solutions for a single-family home. Paper presented at the 30th European Modeling and Simulation Symposium, EMSS 2018, 331-335. 
  7. Fraile-García, E., Ferreiro-Cabello, J., Marrodán Esparza, F. J., & Jiménez-Macías, E. (2016b). Building structure models. impact on cumulative energy demand and carbon footprint. Paper presented at the 4th International Workshop on Simulation for Energy, Sustainable Development and Environment, SESDE 2016, 63-68. 
  8. Fraile-Garcia, E., Ferreiro-Cabello, J., Martinez Camara, E., & Jimenez-Macias, E. (2016). Optimization based on life cycle analysis for reinforced concrete structures with one-way slabs. Engineering Structures, 109, 126–138. https://doi.org/10.1016/j.engstruct.2015.12.001 
  9. Fraile-Garcia, E., Ferreiro-Cabello, J., Martinez Camara, E., & Jimenez-Macias, E. (2016). Optimization based on life cycle analysis for reinforced concrete structures with one-way slabs. Engineering Structures, 109, 126–138. https://doi.org/10.1016/j.engstruct.2015.12.001 
  10. MTMAU Ministerio de Transportes Movilidad y  Agenda Urbana. (2021). Código Estructural. In Boletín 
    Oficial del Estado; Translated as Ministry of Transport,  Mobility and Urban Agenda. (2021). Structural Code. In 
    Official State Gazette (Issue 190, pp. 97664–99452). 
  11. Oregi, X., Hernández, R. J., & Hernandez, P. (2020).  Environmental and Economic Prioritization of  Building Energy Refurbishment Strategies with Life Cycle Approach. Sustainability, 12(9), 3914.  https://doi.org/10.3390/su12093914
  12. Pryce, D., Memon, F. A., & Kapelan, Z. (2021). Life  cycle analysis approach to comparing environmental  impacts of alternative materials used in the  construction of small wastewater treatment plants.  Environmental Advances, 4, 100065.  https://doi.org/10.1016/j.envadv.2021.100065 
  13. Zhang, J., & Ma, L. (2020). Environmental  sustainability assessment of a new sewage treatment  plant in china based on infrastructure construction  and operation phases emergy analysis. Water  (Switzerland), 12(2), 484.  https://doi.org/10.3390/w12020484