A comparison study of a quality of transmission for an analog fiber-optic interconnect line with direct or external modulation 

  • Mikhail E. Belkin ,
  • Mikhail Sizov, 
  • Anna Voronina, 
  • Oleg Gorbachev
  • a,b,cMIREA – Russian Technological University, Vernadsky av. 78, Moscow, 119454, Russia 2LLC
  • Technopark Dagomis", Triumphal Passage, 1, Sirius, Sochi city, 354340, Russia 
Cite as
Belkin M., Sizov M., Voronina A., and Gorbachev O. (2022).,A comparison study of a quality of transmission for an analog fiber-optic interconnect line with direct or external modulation. Proceedings of the 34th European Modeling & Simulation Symposium (EMSS 2022). , 036 . DOI: https://doi.org/10.46354/i3m.2022.emss.036

Abstract

In this paper, with the goal to discover an optimal approach of designing a prospective analog fiber-optic interconnect line, the comparative computer simulation of the quality of transmission parameter is carried out using well-known commercial software VPI Photonics Design Suite. For this purpose, a series of model experiments was realized to measure the laser's relative intensity noise and the output signal-to-noise ratio for cases where direct or external modulation by a radio frequency signal in the band 0.1-20 GHz is used in the transceiving optoelectronic module. In the result, it is clearly demonstrated that, both from a technical and economic point of view the best option for designing a transmitting optoelectronic unit of optical 
interconnect line is external modulation using off-the-shelf electroabsorption modulated laser. 

References

  1. Belkin, M. E. (2012). Multiscale Computer Aided Design of Microwave-Band P-I-N Photodetectors, S. Gateva (Ed.), Photodetectors, InTech, Croatia, pp. 231-250. 
  2. Belkin, M.E., Golovin V., Tyschuk Y., and Sigov A.S. (2018). Modeling Electroabsorption Modulated Laser for Digital Optical Transmission. Proceeding of the 1st IEEE British and Irish Conference on Optics and Photonics (BICOP), 12 – 14 December, 2018, 4 pp. 
  3. Chang K. (2003). Handbook of Optical Components and Engineering. John Wiley & Sons, Inc.: 1380 pp. 
  4. Effenberger, F. (2019). Future Broadband Access Networks. Proceedings of the IEEE, V. 104, Issue 11: 2078-2081 
  5. Fukano H., et al.(2007). Low Chirp Operation of 40 Gbit/s Electroabsorption Modulator Integrated DFB Laser Module With Low Driving Voltage. IEEE Journal of Selected Topics in Quantum Electronics, v. 13, No. 5, pp. 1129-1134. 
  6. Govar John (1983). Optical Communication Systems.  Prentice/Hall International, London, UK. 
  7. Hofmann W., Bimberg D. (2012). Abolishing Copper Interconnects. Compound Semiconductors, vol. 18: 30-34. 
  8. Iannuzzo, Francesco (2020). Modern Power Electronic Devices: Physics, Applications, and Reliability. IET Digital Library: 504 pp. 
  9. Kazmierski C., et al. (2009) 100 Gb/s Operation of an AlGaInAs Semi-Insulating Buried Heterojunction EML. Proceedings of OSA/OFC/NFOEC 2009, OThT7, pp. 1-3 
  10. Kibar O., Van Blerkom D.A. Fan Chi, Esener S.C. (1999). Power minimization and technology comparisons for digital free 
  11. Kibar O., Van Blerkom D.A. Fan Chi, Esener S.C. (1999). Power minimization and technology comparisons for digital free-space optoelectronic interconnections. Journal of Lightwave Technology. V. 17, Issue 4: 546-555. 
  12. Kim B. G., Bae S. H., Kim H., and Chung Y. C. (2018). RoF-Based Mobile Fronthaul Networks Implemented by Using DML and EML for 5G Wireless Communication Systems. IEEE Journal of Lightwave Technology. V. 36, 14: 2874-2881. 
  13. LaMeres, Brock J.; McIntosh Christopher; Abusultan Monther (2010). Novel 3- D Coaxial Interconnect System for Use in System in-Package Applications. IEEE Transactions on Advanced Packaging. V. 33, 1: 37 - 47. 
  14. Li, Er-Ping; et al. (2010). Progress Review of Electromagnetic Compatibility Analysis Technologies for Packages, Printed Circuit Boards, and Novel Interconnects. IEEE Transactions on Electromagnetic Compatibility, V. 52, Issue 2: 248 – 265. 
  15. Salvatore R.A., Sahara R. T., Bock M. A., and Libenzon I. (2002). Electroabsorption Modulated Laser for Long Transmission Spans. IEEE Journal on Quantum Electronics. V. 38, 5: 464- 476. 
  16. Wang Ying; Wang Jian; Yao Lu; Yin Wen-Yan (2021). EMI Analysis of Multiscale Transmission Line Network Using a Hybrid FDTD Method. IEEE Transactions on Electromagnetic Compatibility. V. 63, 4: 1202-1211. 
  17. М. Е. Belkin, V. Iakovlev. Microwave-band Circuit level Semiconductor Laser Modeling. 9th European Modelling Symposium on Mathematical Modelling and Computer Simulation EMS2015, Madrid, Spain, 6–8 October 2015, p. 443-445. 
  18. Mikhail Belkin, Tatiana Bakhvalova, and A.S. Sigov. “Comparative computer-aided design of millimeter wave-to-optical converters for fifth-generation communication network,” Proceedings of European Modeling and Simulation Symposium (EMSS2019), pp. 371-374, September 2019, Lisbon, Portugal 
  19. M. E. Belkin, T. Bakhvalova, V. Golovin, Y. Tyschuk, and A.S. Sigov. “Selecting an optimal computer software for design of microwave-bandwidth optoelectronic devices of a fiber-optics link,” Proceedings of European Modeling and Simulation Symposium (EMSS2019), pp. 304-310, September 2019, Lisbon, Portugal