A multiobjective location-allocation model for day care facilities planning 

  • Victoria Mayela Luna Rojas ,
  • Idalia Flores de la Mota  
  • a,b National Autonomous University of Mexico, A. Universidad 3000, Coyoacán, Mexico City, 04510, Mexico
  • a,b National Autonomous University of Mexico, A. Universidad 3000, Coyoacán, Mexico City, 04510, Mexico 
Cite as
Luna Rojas V.M., and Flores de la Mota I. (2022).,A multiobjective location-allocation model for day-care facilities planning. Proceedings of the 34th European Modeling & Simulation Symposium (EMSS 2022). , 040 . DOI: https://doi.org/10.46354/i3m.2022.emss.040

Abstract

One of the concerns within public organizations in Mexico is to improve the services provided to citizens, however, budget cuts have caused these institutions to seek solutions that fit their resources. Location – allocation of facilities is one of the most important decision-making problems, however, applications of this type of problem have hardly been studied in the context of the institutions in charge of social security in the Mexican public sector. This paper develops a multiobjective optimization model to address the problem of locating day-care facilities for the beneficiaries of the Mexican Social Security Institute, where the objectives are to minimize the cost of operation and the distance traveled by service users, while maximizing the demand covered to be able to have an adequate planning and make improvements for this service.

References

  1. Bruno, Michele & Henderson, Kerri & Kim, Hong. (2011). Multi-objective optimization in urban design. 102-109.
  2. Chouksey, A., Agrawal, A. K., & Tanksale, A. N. (2022). A hierarchical capacitated facility location allocation model for planning maternal healthcare facilities in India. Computers & Industrial Engineering, 167, 107991. https://doi.org/10.1016/j.cie.2022.107991
  3. Deb, K. (2010). Multi-Objective Optimization Using Evolutionary Algorithms. Wiley India.
  4. Endler, K., Scarpin, C., & Steiner, M. (2018). Evaluation of the of Public Network Location Day Care Center: Models and Case Study. IEEE Latin America Transactions, 16(7), 2013–2019. https://doi.org/10.1109/tla.2018.8447370
  5. Esquivel, J. R. B. (2019). Una metodología para la localización de escuelas. (Master’s thesis, National Autonomous University of Mexico, Mexico City, Mexico). Retrieved from http://132.248.9.195/ptd2019/octubre/0796431/Ind
  6. Folezzani, M., Manfredi, M., & Vignali (, G. (Eds.). (2013). Modelling and Multi-objective Optimization of the VHP Sterilization Process of Pouch Packaging. Proceedings of the International Conference on Modeling and Applied Simulation.
  7. Galvão, R. D., Acosta Espejo, L. G., & Boffey, B. (2002). A hierarchical model for the location of perinatal facilities in the municipality of Rio de Janeiro. European Journal of Operational Research, 138(3), 495–517. https://doi.org/10.1016/s0377- 2217(01)00172-2
  8. Hauder, V., Beham, A., Raggl, S., & Affenzeller, M. (2019). Multi-objective optimization for a scheduling problem in the steel industry. THE EUROPEAN MODELING AND SIMULATION SYMPOSIUM. https://doi.org/10.46354/i3m.2019.emss.035 
  9. Holmes, J., Williams, F. B., & Brown, L. A. (2010). Facility Location under a Maximum Travel Restriction: An Example Using Day Care Facilities. Geographical Analysis, 4(3), 258–266. https://doi.org/10.1111/j.1538-4632.1972.tb00474.x 
  10. Hwang, C., Paidy, S., Yoon, K., & Masud, A. (1980). Mathematical programming with multiple objectives: A tutorial. Computers & Operations Research, 7(1–2), 5–31. https://doi.org/10.1016/0305-0548(80)90011-8
  11. Instituto Mexicano del Seguro Social. (2020, December 21). Descripción del servicio de guardería. Retrieved from 
    http://www.imss.gob.mx/sites/all/statics/pdf/guar derias/Descripcion-Servicio-Guarderias.pdf 
  12. Instituto Mexicano del Seguro Social. (2020, November 28). Programa Institucional del Instituto Mexicano del Seguro Social 2020–2024. Retrieved from 
    http://www.imss.gob.mx/sites/all/statics/pdf/tran sparencia/rendicion/PIIMSS-2020-2024-VF.pdf 
  13. Instituto Mexicano del Seguro Social. (2020, August 10). Servicio de Guarderías en el IMSS. Retrieved from https://www.imss.gob.mx/servicios/guarderias 
  14. Instituto Mexicano del Seguro Social. (2022, February 21). Boletín Estadístico Mensual de Guarderías: Prestación Directa. Enero 2022. Retrieved from https://www.imss.gob.mx/sites/all/statics/pdf/gua rderias/estadisticas/Boletin-Ene2022-D.pdf
  15. Instituto Mexicano del Seguro Social. (2022, February 21). Boletín Estadístico Mensual de Guarderías: Prestación Indirecta. Enero 2022. Retrieved from https://www.imss.gob.mx/sites/all/statics/pdf/gua rderias/estadisticas/Boletin-Ene2022-I.pdf 
  16. Instituto Nacional de Estadística y Geografía. (2021, April 22). Censo de Población y Vivienda 2020. Retrieved from https://www.inegi.org.mx/programas/ccpv/2020/ 
  17. International Labour Organization. (2020, December 21). International Labour Standards on Social security. Retrieved from https://www.ilo.org/global/standards/subjects covered-by-international-labour 
    standards/social-security/lang--en/index.htm 
  18. Jin, Z., Li, Y., Fu, G., Dai, K., Qiu, N., Liu, J., Lin, M., & Qin, Z. (2019). Capacitated Facility Location and Allocation with Uncertain Demand for Tourism Logistics: A Multiobjective Optimisation Approach. Mathematical Problems in Engineering, 2019, 1–18. https://doi.org/10.1155/2019/4158940
  19. John Hodgson, M. (1981). The location of public facilities intermediate to the journey to work. European Journal of Operational Research, 6(2), 199– 204. https://doi.org/10.1016/0377-2217(81)90208- 

  20. Khodaparasti, S., Bruni, M., Beraldi, P., Maleki, H., & Jahedi, S. (2018). A multi-period location allocation model for nursing home network planning under uncertainty. Operations Research for Health Care, 18, 4–15. https://doi.org/10.1016/j.orhc.2018.01.005
  21. Kim, I. Y., & de Weck, O. L. (2005). Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation. Structural and Multidisciplinary Optimization, 31(2), 105–116. https://doi.org/10.1007/s00158-005-0557-6 
  22. Kwak, N., & Lee, C. W. (2002). Business process reengineering for health-care system using multicriteria mathematical programming. European Journal of Operational Research, 140(2), 447–458. https://doi.org/10.1016/s0377- 2217(02)00082-6
  23. LINDO Systems, Inc. (s. f.). Powerful LINGO Solvers. https://www.lindo.com/index.php/products/lingo and-optimization  modeling?catid=89&id=88:powerful-lingo-solvers 
  24. Mapa, S. M. S., & Lima, R. D. S. (2014). Combining Geographic Information Systems for Transportation and Mixed Integer Linear Programming in Facility Location-Allocation Problems. Journal of Software Engineering and Applications, 07(10), 844–858. https://doi.org/10.4236/jsea.2014.710076
  25. Marianov, V., & Serra, D. (2002). Location Problems in the Public Sector. Facility Location, 119–150. https://doi.org/10.1007/978-3-642-56082-8_4 
  26. Marler, R. T., & Arora, J. S. (2009). The weighted sum method for multi-objective optimization: new insights. Structural and Multidisciplinary Optimization, 41(6), 853–862. https://doi.org/10.1007/s00158-009-0460-7
  27. Morrison, D. R., Jacobson, S. H., Sauppe, J. J., & Sewell, E. C. (2016). Branch-and-bound algorithms: A survey of recent advances in searching, branching,