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Abstract
Transactions sent to a public blockchain network, such as Ethereum, are initially held in the mempool before they are accepted in ablock. While waiting in the mempool, these ‘in-flight’ transactions are publicly visible and vulnerable to front-running attacks, suchthat malicious parties use information in the transaction for their own gain and at a direct cost to the transaction owner. In this work,we introduce open-source simulation software for identifying and mitigating these attacks on Ethereum blockchains. Designed foreducation and research, the software introduces simple smart contracts that elaborate front-running vulnerabilities such asdisplacement attacks, sandwich attacks, and priority gas auctions. Users can run these attacks in a safe environment, monitor thedetailed mechanics of attacks, and mitigate attacks using the MEV-geth protocol for in-flight transaction privacy.
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1. Introduction

When trading in financial markets, there are dangers inrevealing your hand. Once you have publicly exposed yourtrading intention, it can be possible for others to profit atyour expense by maliciously using your trading intentionagainst you. A classic example of this is front-running. Intraditional financial markets, front-running is often asso-ciated with intermediaries, such as a broker, using theirclient’s trading information against them. For example, ifa client instructs their broker to buy some reasonably largequantity of stock, knowing that the purchase will increasethe market price the broker can first buy the stock on theirown behalf and then sell the stock back to their client atthe new higher price. The broker profits at their client’s ex-pense and the client is none the wiser that they have beenduped. This practice is illegal, but can be difficult to proveunless performed in a naïve fashion. In traditional mar-kets, so called “dark pool” trading venues are designedto stop front-running activity by enabling traders to post

orders that are not displayed. In this way, pre-trade or-der information remains private and cannot be misusedas long as the dark pool operator ensures that informa-tion does not leak (e.g., see Cartlidge et al. (2019)). How-ever, incidents where dark pool providers have systemati-cally abused their privileged access to front-run their ownclients are depressingly common (e.g., see Cartlidge et al.(2021)). To address this issue, some works have employedmulti-party computation to ensure no leakage throughcryptographic methods (Cartlidge et al., 2019, 2021).
In decentralised financial markets – i.e., trading ofcryptocurrency tokens on a public blockchain, such asEthereum – security and privacy challenges are greatly ex-acerbated (e.g., see Massacci and Ngo (2021)). In particular,not only are transactions public and therefore vulnerableto front-running in the traditional sense, but also “in-flight” transactions (TXs) can be observed and attackedbefore they are confirmed (i.e., “mined”) and added tothe blockchain. When a TX is sent to the blockchain net-work, it first waits in the mempool to be confirmed. Each
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TX has an associated gas price, which is effectively a “tip”paid to the miner for confirming the TX. Miners will se-lect TXs from the mempool in order of gas price (i.e., se-lecting the largest tip first). An attacker can observe andexploit a TX waiting in the mempool by sending a new TXwith higher gas price to gain priority and be confirmedfirst, therefore effectively front-running the original TX.This strategy opens up the possibility of a variety of attackstrategies such as: sandwich attacks, similar to traditionalfront-running, where the attacker buys (sells) ahead of alarge buy (sell) TX and then sells (buys) immediately after-wards; and displacement attacks, where the attacker iden-tifies a profitable TX and sends the same TX with higherpriority to steal the profit for themselves. Further, if a ma-licious miner decides to abuse their privileged status in theblockchain network, there are opportunities for additionalattack vectors such as re-ordering or replacing TXs, oreven performing time bandit attacks by mining competingblocks to take advantage of past opportunities (e.g., seeDaian et al. (2020)).
Front-running attacks are common and varied in form.Eskandari et al. (2020) summarise attacks witnessed onthe top 25 decentralised applications (DApps), including:EtherDelta, a more traditional exchange with a centralisedcomponent, being susceptible to spot price manipulationby attackers flooding the market with orders and thencanceling them (taker’s griefing), or by attackers front-running order cancellations (cancellation grief); Bancor, afully decentralised exchange, being vulnerable to sand-wich attacks; Fomo3D, a gambling application, succumb-ing to suppression attacks, whereby an attacker can floodthe market with high gas transactions so that other usersare unable to participate; and reward functions in Cryp-toKitties NFTs (such as giveBirth()) being susceptible todisplacement attacks.
The dollar scale of front-running attacks in publicblockchains is worryingly large. The term “maximalextractable value” (MEV; previously defined as “miner-extractable value”) describes the deterministic value thatcan be extracted by agents from placing, reordering, andexcluding transactions in a block (Daian et al., 2020). Ithas been estimated that more than USD $500 million wasextracted from the Ethereum blockchain over 2.5 yearsfrom sandwich attacks, liquidations, and arbitrage op-portunities (Qin et al., 2022); with pure arbitrage prof-its alone estimated at USD $1.6 million per year (Daianet al., 2020); and USD $0.46 million extracted during thesingle bZx attack (Zhou et al., 2021). To mitigate theseattacks, the Flashbots Auction (https://docs.flashbots.

net/flashbots-auction/overview) network protocol hasbeen introduced to provide a mechanism for agents tosend TXs and have them included by miners without everbeing visible in the public mempool. Resembling a first-price sealed-bid auction mechanism, Flashbots Auctionattempts to eliminate front-running vulnerabilities by ef-fectively creating a dark pool architecture. While the latestversion of the software currently relies on trusted inter-

mediaries (and is therefore susceptible to the same formsof information misuse that we see dark pool providers per-forming in traditional financial markets), the develop-ment road map aims for a fully permisionless system withno trusted intermediaries.
Contribution: In this work, we introduce a simple opensource simulation toolbox for performing front-runningattacks and mitigations in Ethereum blockchain. The sim-ulation software is designed for educational purposes andhas been used in teaching at the University of Bristol, UK,to elaborate smart contract vulnerabilities and mitigationstrategies for students registered on the MSc in Finan-cial Technology with Data Science. Despite the scale offront-running vulnerabilities in blockchain, there is a lackof educational resources to train the next generation ofblockchain application developers in security vulnerabili-ties (see Section 2). To address this gap, we develop andrelease open source simulation code of simple smart con-tracts with known vulnerabilities, code to perform a selec-tion of front-running attacks, and code to mitigate theseattacks using the mev-geth protocol of Flashbots Auction(see Section 3). As a use case for the simulation code, wedevelop a web frontend dashboard UI for teachers and stu-dents to easily perform and inspect these attacks and mit-igations (see Section 4).
For more details on this work, see the longer BScproject report written by Stucke (2022). Simulation code isavailable open source at: https://github.com/zakstucke/

ethereum-front-running.
2. State of the art: software applications

There are a number of software bots available onlinethat perform sandwich attacks on automated marketmakers by exploiting the mempool. The earliest exam-ple we were able to find is the Bancor exchange exploiton the Ethereum main net (https://github.com/bogatyy/
bancor). A plethora of similar bots are also available,including the popular Subway bot (https://github.com/
libevm/subway). Other publicly available bot strategies in-clude liquidity sniping (https://github.com/Supercycled/
cake_sniper) and transaction pool sniping (https://github.
com/a04512/txPoolSniper). Additionally, there are manytools that can inspect and query the mempool and iden-tify arbitrage opportunities, find evidence of front run-ning, and discover tampering by miners, e.g., mev-inspect-
py (https://github.com/flashbots/mev-inspect-py) and
Helios (https://github.com/taarushv/helios). Most dis-turbingly, there are also a number of unethical paid ser-vices that give buyers access to proprietary bots (links notgiven).

However, none of these software tools are designed foreducational purposes. There is a research gap for simula-tion software to aid learning about blockchain vulnerabili-ties and mitigation strategies.
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Algorithm 1: Displacement attack
forkedNet = forkNet(net)
for tx in mempool do

attacker.net, tx.net = forkedNet
startBal = attacker.balance()
tx.data[“from”] = attacker.address
tx.send()
finalBal = attacker.balance()
if finalBal > startBal then

attacker.net, tx.net = net
tx.gas_speed = GAS_FAST
tx.send()

end
end

3. Simulation Software

To demonstrate front-running attacks, we have developeda simulation toolbox. Our toolbox is based on two vulnera-ble smart contracts, written in Solidity, which we use as ex-amples to perform the attacks on. We then have additionalcode that performs the actions of an agent, simulating anormal user who wants to interact with one of the twocontracts, and an attacker, who monitors the activity onthe blockchain, looks for profitable opportunities and exe-cutes the appropriate transactions to capitalise on them.We also implement mitigation code to enable an agent tosend their their transactions to a miner that supports theFlashbot’s MEV-geth protocol, such that an attacker is un-able to view those transactions in-flight. The code is opensource and can be extended.
3.1. Displacement Attacks

A displacement attack occurs when an attacker completesa similar TX before the original agent can complete theirs.Algorithm 1 shows pseudocode for a simplified generaliseddisplacement attack. For each TX in the mempool, theattacker replaces the TX “from” address with their ownaddress, simulates the TX on a Ganache fork, and if prof-itable, displaces the original TX by sending a replacementwith a higher gas price.
In order to demonstrate a displacement attack, we havecreated a simple “holder” contract that can receive fundsfrom anyone using the receiveFunds() method, and willhold the funds until one of our accounts (either the attackeror the agent) extracts the funds by calling the withdraw()method. The withdraw() method of the contract providesthe caller with the assets in the contract, if there are noassets in the contract the call will revert.
A real displacement attack was performed on the holdercontract deployed on the Goerli testnet. The TXs of theattack are as follows:

• Attacker: withdraw()⇒SUCCESS. Gas price: 2.92 Gwei.• Agent: withdraw()⇒REVERTED. Gas price: 1.25 Gwei.

Algorithm 2: Sandwich attack
for tx in mempool do
if tx.data[“to”] = simplePool.address then
if simplePool.getFuncName(tx) =
“swapEthForTokens” then

tx.data[“gasPrice”] = GAS_FAST
tx.data[“from”] = attacker.address
tx.send()
sellTx =

simplePool.createTx(“swapTokensForEth”,
attacker, GAS_SLOW)

sellTx.send()
end

end
end

We see that the attacker identified the agent’s
withdraw() TX in the mempool and performed a displace-ment attack by posting a withdraw() TX with highergas price, therefore gaining priority and successfullywithdrawing the funds from the contract. The agent’s TXis subsequently reverted as there are no funds remainingin the contract. The agent loses both the funds and alsothe gas price paid for the transaction. In this simplecontext it is clear why the displacement attack is profitable(the attacker withdraws all funds from the contract beforethe agent has a chance to do so). However, notice that, ingeneral, the attacker does not need to understand why thedisplacement attack will be successful, only that the TXreturns a profit in simulation.
3.2. Sandwich Attacks

Algorithm 2 presents pseudocode for a simplified sand-wich attack. For each TX in the mempool, if the attackerrecognises the TX is interacting with a known liquiditypool and is a swap, it front-runs the TX with its own in-formation with a higher gas price, then back-runs the TXwith a reverse swap with a lower gas price.To demonstrate sandwich attacks, we have imple-mented a simplified Automated Market Maker (AMM)contract that uses the constant product model to facilitatetrades between ETH and a made-up internal token TOK,i.e., the contract is equivalent to a very simple liquiditypool or exchange that allows two cryptocurrency tokensto be swapped. The contract holds liquidity in the formof a balance of the token and ETH that is sent to it. Thecontract also keeps track of the balances of the agent andthe attacker (in terms of the aforementioned token), andallows them to deposit funds into the contract in returnfor tokens, or to exchange their tokens for ETH.Again, the Goerli testnet was used to perform a realsandwich attack. Using our code, we were able to identifythe in-flight transaction of the agent in real-time and sendthe attacker’s sandwich transactions. The TXs of the attackare as follows:

https://github.com/zakstucke/ethereum-front-running/blob/main/backend/sol_files/displacement.sol
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https://goerli.etherscan.io/tx/0xe9bd6f56fea0835e1e3c5d8f4dfeeffe652a66738c28abef96107ddacfb0540c
https://github.com/zakstucke/ethereum-front-running/blob/main/backend/sol_files/sandwich.sol


• Attacker: swapEthForTokens()⇒-0.05 ETH. Gas price:3.22 Gwei.• Agent: swapEthForTokens()⇒-0.05 ETH. Gas price:1.78 Gwei.• Attacker: swapTokensForEth()⇒+0.066 ETH. Gas price:1.25 Gwei. Reverse swap profit: 0.016 ETH.• Agent: swapTokensForEth()⇒+0.034 ETH. Gas price:1.77 Gwei. Reverse swap loss: 0.016 ETH. NB: TX per-formed separately in different block, for completeness.
We see that the attacker identified that the agent hassubmitted a TX to swap ETH for TOK with gas price 1.78Gwei. The attacker places a TX to make the same swap, butwith higher gas price 3.22 Gwei in order to gain priorityand be processed first. In this way the attacker front-runsthe agent. The attacker also sends a TX to swap TOK backto ETH, this time with lower gas price (1.25 Gwei) than theagent’s TX, to ensure that it is processed after the agent’sTX has moved the swap price. In this way the attackermakes a profit of 0.016 ETH. For completeness, we alsoshow that if the agent later swaps TOK back to ETH, theymake a loss of 0.016 ETH, equal in magnitude to the profittaken by the attacker.Given that Ethereum blocks are mined approximatelyevery 13 seconds and the maximum size of a block is 30 mil-lion gas units, in the worst case scenario where every TXuses the minimum gas possible (21,000), there are a maxi-mum of 1428 TXs in an Ethereum block. However, runningour code on a local machine, it is currently possible to sim-ulate a maximum of only 28 TXs from the mempool every13 seconds. Also, if the attacker is to act upon an identi-fied attack, even fewer TXs can be simulated as the periodnear the end of the block must be reserved for sending TXs.Since the chances of finding a profitable opportunity inthe first few transactions of each block are slim, we werenot able to use the software to simulate an attack on a realliquidity pool contract. Therefore, to demonstrate that asandwich attack is possible, we simulated a manual at-tack on a Uniswap v2 liquidity pool on the Ropstein testnetusing a series of four TXs that exchange Wrapped Ether(WETH) and Uniswap tokens (UNI), as follows:

• Attacker: swap(10 WETH)⇒5.76 UNI.• Agent: swap(35 WETH)⇒19.26 UNI.• Attacker: swap(5.76 UNI)⇒10.68 WETH. Reverse swapprofit: 0.68 WETH.• Agent: swap(19.26 UNI)⇒32.17 WETH. Reverse swaploss: 2.8 WETH. Presented for completeness.
We can see that the attacker profits by 0.68 WETH fromthe sandwich attack. The attack works on the real liquiditypool in the same way that we demonstrated with the simplesimple AMM contract.
3.3. AttackMitigation usingMEV-geth

To implement a mitigation strategy for the previously de-scribed attacks, we use web3-flashbots to send the agent’stransactions directly to the miners using the MEV-geth

Algorithm 3:MEV-geth transactions
bundle = list(txData)
if txData[“gas”] < 42000 then

bundle = list(txData, createDummyTx())
end
blockNum = getCurrentBlock()
for x=blockNum; x+1; x < blockNum + 10 do

success = sendFlash(bundle, blockNum + x)
if success = True thenbreak
end

end

protocol, without passing through the mempool. Algo-rithm 3 shows pseudocode for sending TXs to miners thatsupport the MEV-geth protocol. The transactions are bun-dled, and the bundle must have a minimum of 42,000 gas.A dummy TX will be included if the target TX does not meetthis requirement. The bundle is sent and specifies the tar-get block. Finally, the logic repeatedly attempts to includethe TX in ten consecutive blocks until one TX succeeds.We chose to implement MEV-geth as this is the mostmature protocol available for mitigating vulnerabilities inthe mempool. Alternative mitigation strategies have beenproposed, but none are suitable for our means. For in-stance, in their systematization of knowledge, Baum et al.(2021) classify three categories of front-running mitiga-tions: fair ordering (e.g., see Kelkar et al. (2020)), batchingof blinded inputs, and private user balances and inputs;the former preventing arbitrary transaction re-ordering,the latter two hiding the contents of the TXs and the user’sintent. Fair ordering would require protocol-level changessuch as “y-batch-order-fairness”, where TX’s are orderedbased on when y% of nodes receive each TX; this is shownto introduce new TX front-runners that attempt to senda TX and meet the required threshold before the originalTX can do so. During batching, users’ TXs would be com-bined and sent through some intermediary smart contract,only releasing user balances once all TXs have been com-pleted. Secret user input stores can also be maintained byDApps off-chain to prevent visibility until the completionof the operation, although this significantly reduces thepermissionless nature of the DApp.protect a specific smart contract.Alternatively, Heimbach and Wattenhofer (2022b) pro-posed DApp-specific mitigations for transaction reorder-ing, such as an AMM automatically extracting any MEVcreated by an agent’s TX and giving it to the agent them-selves, or by redesigning Decentralised Crypto Exchanges(DEXs) to enforce fair ordering through off-chain imple-mentations. They also propose a trusted centralised thirdparty or an algorithmic committee as a fair ordering en-forcer and discuss a potential model where a TX is guar-anteed to only succeed if the blockchain state has notchanged after submission. However, all methods put for-ward require either significant Ethereum protocol change
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Figure 1. Dashboard configuration.

Figure 2. Dashboard transaction log.

or specific smart contract implementations. Heimbachand Wattenhofer (2022a) also show that some produc-tion automated market makers (AMMs) are vulnerableto sandwich attacks and, as mitigation, they propose anoptimal slippage tolerance algorithm that they encourageAMMs to adopt. Varun et al. (2022) train an LSTM to de-tect displacement, insertion, and suppression attacks anddeploy the model in a smart contract to monitor and re-vert malicious transactions as they arrive. However, thisapproach will only protect a specific smart contract andnot the Ethereum blockchain itself.
Eskandari et al. (2020) argue that traditional mitiga-tions such as legal actions, dark pools, and sealed bid auc-tions do not work in a blockchain setting. They summarisesolutions presented in the literature, including buildingDApps using design patterns, such as commit and revealschemes or batch ordering, that prevent front-running.They also suggest that some forms of attack can be miti-gated by setting up transactions in such a way that theyonly execute in a particular smart contract state and oth-erwise fail. However, once again these solutions will only

Figure 3. Dashboard balance monitor.

4. Use Case: UI Dashboard

Here, we extend the simulation code presented in Section 3.We present an interactive web interface that acts as a dash-board for educational purposes. The dashboard enablesusers to easily perform sandwich and displacement attackson the real Goerli test-net and study the transactions thatare produced. The dashboard visualises the interactionsbetween agents and attackers during these experiments,the financial outcome of the attacks on all parties. Thedashboard also demonstrates an attack mitigation, suchthat if an agent sends their transactions to a miner thatsupports the Flashbot’s MEV-geth protocol, the attackeris unable to see those transactions and is thus unable tocapitalise on them.As shown in Figure 1, users are initially presented witha form to configure an attack simulation: displacementor sandwich. Users can also specify the execution typeas “traditional”, where TXs are sent using the canonicalmethod such that they can be observed pre-completionin the mempool, or using “MEV-geth” protocol, whichprevents pre-completion visibility and therefore stops theattacker from interfering. For simplicity, the system en-forces a single experiment to be running at any one time.If an experiment is already running, this form will rejectthe request and inform the user to wait for a few minutes.As shown in Figure 2, the dashboard provides a trans-action log which presents a list of recent TXs. The list isrefreshed every three seconds with the most recent TXs inthe database; by default, the list is configured to show onlythe most recent experiment TXs but this can be changedto see up to 30 recent TXs across experiments. IncompleteTXs can also be filtered out of the list view. When showingfor a specific experiment, the experiment configuration isincluded at the base of the list; upon completion, the agentand attacker outcome balances are also shown at the topof the list. In the example presented, we see that the latestsimulation has completed, with the attacker gaining 0.010ETH in profit from the agent. Initially, each TX shows itsdescription, current status, priority fee, and send time.Upon clicking a particular TX, the complete information isprovided in a pop-out (see Figure 4), including the TX dataand a link to the TX on the explorer. This is only available



Figure 4. Dashboard TX pop-out. Full TX information is shown along with a link to the TX on the blockchain explorer (if applicable).

when the TX is on the Goerli network and the TX has beencompleted.As shown in Figure 3, the balance changes of both theattacker and agent wallets are visualised with a line graph.Transactions for each account are polled over the last hour.Balances are then calculated for the block height of eachtransaction; the balances at the start and end of the periodare also shown. These balances can be refreshed usinga button below the graph. Over the time period shown,the attacker has gained 0.106 ETH profit at a direct cost tothe agent. Finally, the site page also contains an informa-tion tab that provides details on the smart contracts usedand further information relating to the experiment andexecution types.
5. Conclusion

We have introduced a minimal simulation framework forexploring front-running attacks and mitigation strategiesin Ethereum blockchains. The holder smart contract usedfor displacement attacks and the AMM contract used forsandwich attacks are deliberately designed to be simple asthe aim of the simulation software is for educational pur-poses. However, there are some limitations to the softwareand obvious areas for extension. We consider these below.
5.1. Dangers for the attacker

In the real-world, agents’ TXs will be placed at randomtimes during the mining of a block, i.e., the agent mightplace a transaction one second before the next block is

mined and their transaction could be included in that block.Therefore, some TXs will mine before the attacker has no-ticed there is an opportunity, so the attacker will missthem. More dangerously for the attacker, some will mineafter an attacker has initialised their attack. When thisoccurs, the attacker’s TXs will still be included in the block,which might lead to a loss for the attacker. Furthermore,the attacker might itself be front-run by other attack-ers. The attacker could rectify these issues by operatingthrough both an intermediary smart contract and utilizingMEV-geth. The attacker could create a contract that exe-cutes the attacking TXs but reverts upon an unprofitableoutcome. Given reversions are not included when usingMEV-geth, the attacker would utilise MEV-geth to sendthe TX to the intermediary contract. The TX would not beincluded if the attack would fail at the point of inclusion,effectively reducing the risk for the attacker to zero.
5.2. Mitigations are susceptible to malicious miners

Miners can be malicious themselves. It is assumed thatTXs will be picked from the mempool by order of gas price,however, miners have the ability to re-order and replaceTXs with their own in order to extract MEV themselves.MEV-geth provides no protection from miners, it simplyprotects agents from other attackers viewing the mem-pool; the miner who mines the block still has completeaccess. Whilst still providing significant protection fromother agents in the system, the requirement to trust theminer is still a significant limitation in the current mitiga-tions provided by MEV-geth. As of writing, the Flashbots
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organisation is upgrading its MEV-geth protocol continu-ously. Flashbots aim to eventually make the contents of aTX unavailable even to the miner; if this is successful, thislimitation will be rectified.
5.3. Liquidity pools are less susceptible to attacks

The liquidity pools we consider in this work use the con-stant product model (CPM). Whilst this is the foundationof most liquidity pools, it’s a simplification when it comesto the latest production pools. Uniswap is the largest AMMon the Ethereum network, and whilst its previous iter-ations used the CPM, its current v3 version utilises con-centrated liquidity at specific price intervals. Significantupgrades to our algorithm design would be needed to workagainst production AMMs like Uniswap v3. Uniswap alsoimplements a 0.3% fee per swap which is given to liquidityproviders. This fee limits sandwich attack availability toreasonably large opportunities as the attack must profit atminimum 0.6% plus miner fees. Furthermore, agents canset price slippage tolerances on their swaps currently de-faulting at 0.5%; if a sandwich attacker swaps first and theasset price changes by more than the configured tolerance,the agent’s TX will revert, saving them from the attack.Whilst these mitigations do provide protections to naivesandwich attackers, as shown in Heimbach and Watten-hofer (2022a), complete protection is only provided basedon variable, calculated slippage tolerances which AMMsdo not provide by default to agents.
5.4. Simulation speed

Using Ganache to fork the blockchain and simulate trans-actions, like we do here, is relatively slow. If attemptingto run an attacker in a production system, it would needto be simulating thousands of TXs per block, unavailablewith the current setup without significant computationalpower. Whilst in its current form the system could analyseTXs and front-run them, it would not be able to analysea significant quantity of unmined TXs before the blockwas mined and the pending TXs were included. Upgradingthe method used for simulating TXs would be a desirableimprovement as both forking and simulating TXs in thecurrent environment take up significant time. Improve-ments could include: maintaining the current ganachefork, rebasing it on new blocks for each block simulationround; batching simulated TXs together when simulat-ing multiple in a block along with a method to separatetheir outcomes or potentially using a local node insteadfor simulating TXs, discarding Ganache entirely.
5.5. Knowing what information to change

In generalised displacement attacks on the holder contract,the attacker can alter the TX with their own informationby simply altering the “from” data parameter with theirown address. In this scenario, this is all that is neededto make a profitable TX for the attacker. However, it may

often be the case that contract method parameters needaltering to the attacker’s information. Current functional-ity could be extended to test multiple different combina-tions of updated parameters and untouched parameters,as some fields may need to be left untouched to reach aprofitable TX. Contract parameter information is encodedusing the contract’s ABI; if the ABI is not known, it is notpossible to decode the parameter inputs and re-encodewith the attacker’s. The lack of ABI can be mitigated byquerying sites like Etherscan or by decompiling the con-tracts. For sandwich attacks, the same problem is true butto a lesser extent. In the current implementation, we needto know the address and the ABI of the AMM contract toperform the attacks. This is not such a huge issue in thiscase, as these contracts should be accessible by their usersand as such that information is usually public.
5.6. Mempool visibility

We are currently using Infura as our provider. The RPCendpoint txpool_content is not available when using Infuranodes. Given the agent and attacker are both operatingfrom the same system in our experiments, we can storethe pending transactions locally and use that as an ap-proximation of the mempool. However, if this were a realenvironment, this approach would not work as the localpool would have no visibility into other agents’ TXs. Thisis a severe limitation of the current implementation. Toremedy this, another node provider that implements theRPC endpoint txpool_content would be required, or a fulllocal node instance would need to be run to access theendpoint directly.
5.7. Attacks that analyse blockchain state

Currently, we do not look into attack styles that analyse thecurrent state of the blockchain and previously mined TXsto identify opportunities. For example, if an agent were toidentify the holder contract from before as insecure, theycould just monitor for TXs that send funds to the contract,and instantly realise that a profitable opportunity to with-draw the funds is available without having to monitor themempool at all. An attacker could build a system to au-tomatically test contracts on the blockchain, find thesevulnerabilities and then monitor them until they becomeprofitable. Mempool based attackers would not be able tocompete in these scenarios as there are no TXs to analyse.
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