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Abstract
With the growing use of machine learning models in many critical domains, research regarding making these models, as well as theirpredictions, more explainable has intensified in the last few years. In this paper, we present extensions to the machine learning baseddata mining technique Variable Interaction Networks (VIN), to integrate existing domain knowledge and thus, enable more meaningfulanalysis. Several tests on data from a case study concerned with long-term monitored photovoltaic systems, verify the feasibility of ourapproach to provide valuable, human-interpretable insights. In particular, we show the successful application of root-cause detectionin scenarios with changing system conditions.
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1. Introduction
One method to gain deeper insights regarding a trainedmachine learning model is to evaluate the impact of theused variables (note: in this work synonymous for "di-mensions" and "features") on the final prediction, whichis agnostic to the model training algorithm. One goal ofsuch a variable importance (note: in this work synony-mous for "impact") calculation may be to use this infor-mation to improve and speedup the modeling process bypre-selecting variables for future model trainings. An-other one may be to discuss variable impacts with domainexperts and verify the model’s correctness or even to gainnew insights regarding the modeled system. In this work,we focus on so-called Variable Interaction Networks (VIN,cf. Hooker (2004)), representing meta-models which areformed based on variable importance calculations for ma-chine learning models. These VINs display a system’s vari-

ables and their potential interactions as weighted, directedgraph, and hence, provide a visual approach to analyze asystem comprehensively, as the examples in the followingsection 2 show.
In section 3 the fundamentals regarding variable inter-action networks are detailed and open issues highlighted.With the aim for more reasonable network structures, wepresent an extension to the network modeling algorithmin section 4, which enables the integration of domain ex-pert knowledge. In section 5, we present an extension tothe network evaluation algorithm, in order to gain deeperinsights on streaming data dynamics. In section 6 wepresent a real-world case study concerned with photo-voltaic energy communities, which we used to test the VINapproach with the extensions. For this purpose, first wedetail a generated scenario with changing system condi-tions using real-world data and a simulation model. After
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that, we discuss the results collected from experimentswith the extended VIN approach. The final section 7 brieflysummarizes our key findings and provides additional ideasfor further extending VINs.
2. Related work

Variable interaction networks have been successfully ap-plied for different purposes and in a variety of configura-tions. In the following we provide a brief summery of usecases found in the literature and highlight some differ-ences regarding the network creation algorithms used.
In the work of Kronberger et al. (2011) macro-economictime series are analyzed with VINs to identify potentiallyinteresting dependencies of certain economic indicators,such as inflation, unemployment rates or home sales. Theauthors use the VIN for visual data exploration as a firststep to analyze a new data set and later on inspect the mostinteresting found dependencies by investigating the un-derlying detail models individually. A similar approach ischosen by Kommenda et al. (2011) for analyzing a blastfurnace dataset and the resulting VIN as well as the under-lying base models, which were discussed with domain ex-perts. Both works have in common that they use symbolicregression as machine learning method for the VIN-basemodels, which allows them to gain even deeper insights,since symbolic regression models are interpretable, clear-

boxmodels by themselves (Affenzeller et al., 2014).
Winkler et al. (2013) use the VIN approach to calculateand visualize the importance of medical variables for esti-mating breast cancer diagnoses. Concerning VIN creationdetails, the authors of this paper describe several meth-ods to calculate the variable impacts, i. e. the VIN edgeweights, e. g. using the machine learning model error, there-training error, or the variable frequency during thetraining process.
In addition to real-world applications, VINs have alsobeen successfully tested on benchmark data, used to ex-tend and improve the conventional approach. For instanceKronberger et al. (2017) present several measures to quan-tify the similarity of generated networks, using syntheti-cally sampled data with different noise levels. The workof Zenisek et al. (2020) integrates the similarity measuresof Kronberger et al. (2017) and presents a VIN evaluationalgorithm for streaming data to detect system changes.These were manually introduced to a synthetic toy prob-lem using two vessels, filled with liquid and connected bya slowly clogging communication path, representing the

concept drift to-be-detected.
This network evaluation algorithm is discussed ingreater detail in subsection 3.2 as it lays the foundationfor one of the extensions presented in this work. As men-tioned before, another extension concerns the networkmodeling algorithm, which will be described in subsec-tion 3.1.

3. VIN Foundations and Open Issues

Conventional supervised machine learning methods aimto model a system using a set of variables (reminder: inthis work synonymous for "dimensions" and "features")as training input and one specific estimation target, i. e.the model output. Instead of having one specific targetvariable to be estimated, Variable Interaction Networks(VIN) model a system comprehensively by displaying vari-able impacts: A VIN is a weighted, directed and potentiallycyclic graph with variables as nodes and their impact oneach other as directed, weighted edges. The algorithms tocreate and evaluate VINs are detailed below.
3.1. NetworkModeling

As for any other machine learning approaches the start-ing point for modeling is given by a data set with severalvariables (e. g. x1 – x6) and respective observations (i. e.samples), which represents a real system, monitored overa certain period of time. The format of this data may be astructured data table as in Figure 1a. The first step to createthe network is to train a model for each of the availablevariables, with the respective variable as target and usingthe others as input (cf. Figure 1b). After this alternatingmodeling process, the impact of each variable in each ofthe models is computed, as illustrated for the x6-model inFigure 1c. Exemplary methods for the calculation of vari-able impact are Permutation Feature Importance (PFI) pro-posed by Breiman (2001) and Fisher et al. (2019), the Shap-ley Value of Shapley (1953), the derived and more runtime-efficient SHAP method of Lundberg and Lee (2017), or thevariable frequency within a genetic programming run asdescribed by Kronberger et al. (2011). A good overview onvariable impact calculation as well as alternatives to makemachine learning models explainable is given by Molnar(2022). The result of this calculation is a quadratic matrixof real numbers with one column for each target and onerow for each input. In a final step the network is createdby adding a node for each variable and adding weighted,directed edges for each calculated impact value (cf. Fig-ure 1d). In order to prune the resulting network, differentthresholds can be applied as described in Kronberger et al.(2017): For instance, a maximum estimation error maybe defined to decide which model should be taken into ac-count when calculating variable impacts. Another usefulthreshold is a minimum value for the calculated variableimpacts (cf. Figure 1c) which controls to create edges onlywith a certain weight and hence, prevents that the finalresult is a fully connected graph with many almost irrel-evant edges. Because of the described, comprehensivemodeling approach, the resulting networks most likelycontain cyclic dependencies, which may impair their read-ability and thus, their feasibility as interpretable machinelearning model. Therefore, Zenisek et al. (2020) proposean algorithm to remove cycles by iteratively deleting theweakest link within the shortest cycle until an acyclic net-work is created.
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Figure 1. Conventional variable interaction network modeling approach:Based on recorded system data, models are trained with arbitrary learningalgorithms for each available variable using the others as input. Subse-quently, the impact of each variable within each of the trained models ismeasured and the network is created by adding a node for each variableand weighted, directed edges for their impact others.

Although these extensions already support the creationalgorithm to gain more concise, hence readable networks,which only display the most important connections, theVIN approach still has several flaws: For instance, it suf-fers from the curse of dimensionality, since the numberof potential edges grows quadratically with every addedvariable. A high number of possible edges not only leadsto complex networks, but also increases computation run-time drastically, since some of the variable impact calcu-lation methods are quite resource demanding. Further-more, most calculation methods are non-deterministic,which may cause numerous valid alternatives for resultingnetwork structures. Therefore, improving the approachregarding interpretability is an open issue. One possibilityfor improvement is to perform feature reduction, eitherautomatically using a feasible algorithm, or by hand basedon the pre-selection of domain experts.
3.2. Network Evaluation

In the work of Winkler et al. (2015) a sliding window ma-chine learning approach is proposed to analyze changesof predictability and variable relationships over time for aset of financial data, in order to gain insights concerninga complex real-world system’s dynamics. With the sameobjective Zenisek et al. (2020) present an algorithm toevaluate variable interaction networks on streaming datain a sliding window fashion, which is illustrated in Fig-ure 2. The VIN evaluation approach for analyzing stream-ing data is an algorithm which can be performed subse-quent to the network modelling approach on which it relies.
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Figure 2. Symbolic illustration of the VIN based data stream analy-sis approach on data with a known, because intentionally introduced,drift. Edge design in 2b: black=unchanged, yellow=changed, green=new,dashed=vanished variable impact.

Therein, data is considered to arrive for analysis contin-uously, i. e. observation by observation. Either the data isin fact streamed live, e. g. from a sensor equipped system,or it may be replayed to simulate such a real-world situa-tion, as we did in the experiment setup for this work. Todiminish negative effects of seldom outliers or short-termtrends, the data stream should not be processed point bypoint, but instead by using a sliding window of a certainsize, which moves if new data points arrive (Figure 2a).With the current data partition inside the window, the pre-viously trained machine learning models are re-evaluatedand variable impacts re-calculated in order to create a newVIN. In the second step of the evaluation algorithm thisupdated network is compared to the original one, createdon the training data (Figure 2b). Therefore, we make useof similarity measures for graphical structures proposedby Kronberger et al. (2017), in particular the Spearmanrank correlation, which compares the ranks of descendingordered variable impacts, and the Normalized DiscountedCumulative Gain (NDCG), which similarly rests upon theimpact order but also considers the impact magnitude, i. e.the real-valued impact. The network re-creation and com-parison is performed repeatedly with each sliding windowmove and generates similarity trend lines as in Figure 2c.Assuming that the original network represents a stablesystem state, one can now easily monitor if and to whatdegree a system changes over time and could introduce acustom threshold at which the system should be declared"changed" or "drifted". In case the actual drift progressionis known, either because it was manually introduced onbenchmark data or measured post factum, the correlation
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Figure 3. Conventional modeling concept to create digital models — ei-ther simulation models (cf. left-hand side) or data based machine learnedmodels (cf. right-hand side) – of real systems. Using the data generated bysimulation runs, so-called surrogate models can be created with machinelearning for cases where no, or too little data is available for the direct ap-proach.

between network similarity and drift can be calculated. InFigure 2c the known drift is represented by the black col-ored series Drift, which was inverted by 1 – x beforehandfor the sake of better readability. The correlation valuerepresents a score, how well the VIN evaluation approachdetects system behavior – stable and drifting – over time,as shown in Figure 2d.
In the context of this algorithm an efficient impact cal-culation method is crucial, as VINs have to be re-createdwith every sliding window move. However, certain variableimpact calculation methods are quite time consuming (e.g.Shapley Value) and thus, infeasible for high-dimensionalnetworks as runtime grows quadratically with every addedvariable. Another open issue is that although drift detec-tion can already be performed on threshold-basis, furtheranalysis potential of VINs towards drift root-causedetectionhas not been investigated yet.

4. Knowledge structured Networks

This section is concerned with an extension to the net-work modeling process, depicted and described in Fig-ure 1. The process follows the conventional data basedmodeling approach as shown and described in Figure 3:All information of a real system is used as input to createone global model, be it a computer simulation model or amathematical model generated by machine learning. Inorder to deal with the open issues, described in the lattersection, we propose another modeling strategy for databased models in general and specifically for variable in-teraction networks, as illustrated in Figure 4. Followingthe plain concept of divide-and-conquer, we propose tosplit a system and the respective data into smaller enti-ties and model each component individually. Due to thedecreased complexity of such components, it is easier andless runtime consuming for training algorithms to gen-erate models. Thus, we propose to train multiple modelsfor each component with different machine learning algo-
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Figure 4. Concept to create (hierarchically) structured models of complexsystems utilizing existing domain knowledge. For each system componenta simulation model and several different data based models, using arbitrarylearning algorithms (cf. figure legend), may be created in parallel. On eachhierarchical layer one of them is selected for each system component andaggregated to a larger entity, forming a system component on the nextlayer – a "lower" component’s output is a "higher" component’s input,e. g. OverallSystemRuntime(RT) = RTComponentA + RTComponentB

rithms in parallel. Subsequently the best model for eachcomponent can be selected and aggregated by some inter-face to form the entire system, as shown in the hierarchi-cally organized system in Figure 4. In terms of variableinteraction networks the approach can be implementedby pre-selecting variables for each of the base models, de-picted in Figure 1. This might be done hierarchically asjust described or following any other suiting topology. Thepart of model selection is performed by creating the net-work from a collection of heterogeneous model types: in-stead of having one random forest model for each targetvariable, an ensemble of different model types is trainedin parallel (e. g. random forest, symbolic, linear regres-sion etc.). To form the network, for each target the bestmodel (i. e. lowest test partition error) is selected. Withthis new modeling approach, we identify four differentVIN types, as shown in Figure 5: A CCN represents the con-ventional modeling approach, although impact and modelerror thresholds to prune the network may already beenapplied. By de-cycling the CCN network, using the before-hand mentioned algorithm of Zenisek et al. (2020), theacyclic CAN is created. The STM represents a VIN with only
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Figure 5. Types of Variable Interaction Networks (VIN), depicted in a sym-bolic form and without weights for the sake of simplicity.

one variable as impact sink, i. e. with just one underlyingmodel. The herein described new modeling approach islabeled as "Knowledge Structured Network (KSN)", sincedomain knowledge is necessary to perform the proposedpre-selection of variables. Ultimately, we define an ad-ditional network subtype, called "Knowledge StructuredNetwork with Mixed Models (KSN MX)", which is a vari-ant derived from the KSN type. As the name indicates,networks are created using a mix of different model types,as described in themodel selection part of Figure 4.
5. Drift Root-Cause Detection

This section is concerned with an extension to the networkevaluation algorithm, depicted and described in Figure 2.In addition to create more reasonable network structures,we aimed to further extend the VIN-based algorithms fordata stream analysis concerning the interpretability ofsystem dynamics so that changes get visually more con-ceivable to a monitoring domain expert. The following,so-called root-causedetectionwas developed to track downchanges over time, and thus, enable the analysis of systemdrifts in greater detail:
1. Create a VIN which holds the compared edges of theoriginal and the updated network. This change-VIN con-sists of the following edge types: original (unchangedweight), changed (changed weight), new (updated weight> threshold), removed (updated weight < threshold).2. De-cycle the change-graph: identify all cycles and iter-atively remove the weakest link within the shortest, stillpresent cycle until all cycles are removed (for the completealgorithm see Zenisek et al. (2020)).3. Generate all paths from source to target nodes, e. g.using a depth-first-search.

Figure 6. Visualization of a sample drift root-cause detection run on theResinet real-world dataset, which is concerned with connected photo-voltaic systems and further discussed in section 6, with highlightedhotpath(cf. the red colored path). The to-be-detected drift is caused by a rapidlydegrading battery c-rate in photovoltaic SystemC (cf. brown nodes), whichthe presented algorithm on the generated hotpath correctly captures.

4. Calculate and highlight the hotpath– the path with thehighest change sum.5. Track down the root variable by following the reversedgraph direction.
Figure 6 depicts a successful sample run of this analysisapproach on the real-world Resinet dataset, which is fur-ther detailed in subsection 6.1. In this example, we useda knowledge structured VIN and were able to track downthe specific system component which causes a change,which has been manually introduced beforehand. A morecomprehensive analysis is given in section 6, where wepresent root-cause detection results from analyzing datastreams with differently created VINs (cf. section 4) on alarger series of tests.
6. Case Study: Resilient Energy Networks

In the scope of this work we test the effectiveness of thepresented methodological extensions on data originatingfrom the project Resinet– Resilient Energy Networks. Inthe following, we detail the project’s specific problem in-stance as well as the experiment setup, and show and dis-cuss the collected results.
6.1. Problem Instance

The Resinet project is concerned with analyzing energynetworks with regard to their resilience. As part of this,we developed prediction models for
• photovoltaic power production,• power consumption,• the State Of Charge (SOC) of batteries,• grid input/output power



based on data from 188 households from the region of Up-per Austria, all equipped with roof-top mounted photo-voltaic modules and battery packs. The measurementscontain data from 2015 - 2019 and come with several sys-tem configuration information, e. g. peak power produc-tion, battery capacity. The combined peak power outputof the photovoltaic modules per system ranges from 3 kWto 30 kW, the capacity of the installed batteries rangesfrom 3.5 kWh to 9.6 kWH. As a first step we linked thedata with geographic and temporal information (e. g. alti-tude, twilight times) retrieved from various web services.Most importantly we linked the time series with weatherdata, such as global radiation, air temperature and precipi-
tation sum, from the Austrian weather forecasting systemINCA (Haiden et al., 2009). This enriched data set sumsup to roughly a 100 million rows, with 75 partly measured,partly computed variables (cf. feature engineering). Sincethe system measurements were recorded with a 5-minutefrequency, but the INCA weather data is only available onan hourly basis, we re-sampled the time series by takingthe hourly mean for each available variable.After these major and other data pre-processing steps,we were able to develop prediction models with sufficientperformance for the listed system components. To investi-gate network resilience – the ultimate goal of the Resinetproject – the analysis of separate models is infeasible, how-ever. The extended VIN approach, on the other side enablescomprehensive system analysis. In this particular work,we focus on analyzing system dynamics in terms of a root-cause detection as a detail research question: We aim toidentify the reasons which lead to changing or unstablesystem behavior and thus, the need for resilience. There-fore, we designed following what-if scenario:
What if... a small community of 3 systems is sharing its
batteries by charging them together for higher network-
independence? Canwedetect a failingbatterypack in such
a scenario? (cf. illustrated in Figure 7).

For this purpose, we used the measured real-worldsystem data, but re-calculated battery states and grid in-put/output differences, to simulate that the systems areconnected and sharing their surplus energy produced (Fig-ure 7). For instance, if the consumption of a system canbe covered with the current energy production and thesystem’s battery is already filled, surplus energy is sharedequally amongst the other community members and onlyafter that, left over energy is passed to the public grid. Thisway, a small virtual energy community (Faria et al., 2019)is simulated, which should provide more overall grid in-dependence than unconnected individuals can reach. Foreach of the experiment runs, we introduced rapid degrada-tion of the charge/discharge function (c-rate) of a randombattery at a random point of time, using the data streamgeneration tool from Zenisek et al. (2018). By this means,we aim to simulate a probable, but not directly observablemaintenance problem, which could impede the gained net-work independence, but potentially remains undetected
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Figure 7. Concept for (hierarchically) structured models (see: Figure 4)applied on the Resinet case study: an energy community of three photo-voltaic and battery equipped households (Systems A, B, C), connected toshare surplus energy. In this example system A and system C are able toproduce energy due to good weather conditions, while system B is not. Thephotovoltaic power system C covers its own current power consumption,has already filled up its batteries, and hence, shares its surplus energy withits community members A and B. Due to bad weather conditions at systemB, no power can be produced, however the shared energy of system C canbe used to cover parts of the current consumption and to charge the battery.At system A a battery charge malfunction is indicated, which causes thatits own produced, as well as the shared energy cannot be used in full. Thishowever, remains undetected, since we do not assume having hardware toidentify battery errors of this kind in our simulation.

due to the compensatory behavior of the interconnectedenergy community. This concept of using real-world dataand enriching it with simulated data is depicted and sum-marized in Figure 8. Due to novelty of the energy commu-
nity-idea, real-world data on household level is currentlynot available, which motivated our simulation based ap-proach.
6.2. Experiment Setup

The following items denote the most important parame-ters of the performed experiments.
Training Algorithms andModels: We developed LinearRegression models (LR, Draper and Smith (1966))as well as Symbolic Regression models using ge-netic programming (SR, Koza (1994)) and RandomForest Regression (RFR, Breiman (2001)) modelsas base for our VIN approach. For the RFR and SRmachine learning algorithms we used a configura-tion similar to Zenisek et al. (2020) to get feasi-
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Figure 8.Workflow to generate experimental data: A lean simulation modelwas created, utilizing the existing domain knowledge regarding energyproduction and consumption dependencies. Further on, parameters toformulate the describedwhat-if-scenario were integrated and the modeladapted accordingly. The final experiment data sets consist of original,i. e. real-world input data and the output data, produced by the adaptedsimulation model, which processes input data and scenario parameters.

ble results, although ML fine tuning is not in thefocus of this work: RFR models = trees: 50; M:0.5; R: 0.3; SR models = 10 ensembled best solu-tion candidates from individual runs; max. tree size:35, terminals: constants, variables; non-terminals:+, –, ∗,analyticquotient, log, exp, sin,htan
VIN Creation Thresholds: With reference to the model-ing results, we defined no maximum NormalizedMean Squared Error (NMSE) so that any model cantake part in the network creation algorithm. One rea-son therefore was to get a fair comparison between allmodel types, since VIN structuring is already part ofmost of the used modeling strategies. An additionalthreshold could obfuscate the comparison. Moreover,a general maximum NMSE could not have been set,since the results for the power consumptionmodelscould not be tuned further than a quite high NMSEof 0.791 (cf. Table 1). For the same reasons no mini-mum variable impact was set. However, the numberof variables was already limited to a reasonable setbeforehand by domain experts.
Training Data: All models have been trained on real-world and partly simulated time series data, as de-scribed in the latter subsection 6.1. For this purposewe use data from 3 random households (denoted assystem A, B, C) and the monitoring period 2016-2017.Aggregated results from the test partitions of 10-foldcross validation experiments are given and describedin Table 1. More details regarding experiment setupand results of these prediction models will be pre-sented in future work. For the purpose of this work,the herein shown results are already sufficiently goodto work as a VIN model base.
Network Types: We trained and evaluated all of the iden-tified VIN types, described in section 4: Comprehen-sive Cyclic Network (CCN), Comprehensive AcyclicNetwork (CAN), Single Target Model (STM), Knowl-edge Structured Network (KSN) and Knowledge Struc-

tured Network with Mixed Models (KSN MX). For thelatter two types the necessary variable pre-selectionwas performed based on the hierarchical structureillustrated in Figure 7, which represents existing do-main knowledge. Due to the simulated system con-nections, the pre-selection follows the horizontal lay-ers, however does not separate the systems vertically,since certain variables may influence more than justthe system to which they originally belonged. For in-stance, the Grid Diff-model of system C has its own
Battery SOC, but also the Battery SOC of system B in itsinput vector – see example KSN network illustratedin Figure 6. Thus, all variables of the previous layerare available for any system model in the next one. Bythis means, energy sharing scenarios can potentiallybe modelled correctly.

Evaluation Data: The data used for the implementeddrift-detection and root-cause detection experimentsoriginates from the same source, as the training data,but from the year of 2018. Based on this, we randomlysampled 24 time series, each with a length of 2160consecutive events, i. e. hourly aggregated recordings(3 months * 30 days * 24 hours) and simulated 8 bat-tery outages per system on it: We introduced 8 dif-ferent maximum drift levels per system from 30% to100% c-rate degradation with a 10% step in between.The drifts start at a random point after a minimum of250 events and take 250 events (ca. 10 days) to reachtheir target level. For our tests data has not been shuf-fled, to be able to monitor the degradation as it wouldoccur in reality.
Evaluation: We used a sliding window size of 100 (ca. 4days) and a step width of 1 event (1 hour) for all ex-periment runs, as we gained promising results fromprototypical tests with this setting. Within each slid-ing move, the originally built and the updated net-works are compared using the Spearman rank andthe Normalized Discounted Cumulative Gain (NDCG).
6.3. Results and Discussion

In Table 1 the Normalized Mean Squared Error (NMSE) forseveral machine learning models, which serve as a basisfor the variable interaction network creation algorithmis given. One can easily observe that except for the power
consumption target, the models come with quite low esti-mation errors. We could quickly determine that the reasonfor the unpredictability of power consumption is due tothe lack of data – except for time information (assump-tion: more power is consumed on weekends) and weatherconditions (assumption: e. g. low air temperature causeshigher energy consumption of heat pumps), there is sim-ply too less indication in the data to estimate the powerconsumption of the monitored households for a specificpoint in time. Overall, for the most system componentsthe Random Forest Regression (RFR) models perform best,closely followed by the Symbolic Regression (SR) models



and with some distance followed by the Linear Regres-sion (LR) models. As explained in the latter section, nomaximum error threshold was set for the subsequent VINcreation algorithm. We decided to do so, due to high er-rors of power consumption models and for the sake ofcomparability of the already differently structured VINtypes. However, the presented NMSE values are used forthe Knowledge Structured Network with Mixed Models(KSN MX) to select the best available models per systemcomponent automatically. By this means, the KSN MX,which represents the described Resinet problem instance(cf. Figure 6), consists of random forest regression modelson the lower hierarchical layer (pv production, power con-sumption, battery SOC) and of symbolic regression modelson the upper layers (grid diff, grid diff global).
Table 1. Machine Learning (ML) training results in terms of a NormalizedMean Squared Error NMSE-score for several example targets using differ-ent ML algorithms. With exception of Grid Diff Global the displayed resultsrepresent the mean values for the three connected systems.

RFRSRLRModeling Target
0.0560.0600.076PV Production 0.7910.8550.931Power Consumption 0.1140.1840.193Battery SOC 0.1100.1040.176Grid Diff 0.0120.0000.000Grid Diff Global

The boxplots in Figure 9 and Figure 10 show how welldifferent VIN types with different underlying machinelearning models perform on drift detection, which wastested on a set of 24 time series with random, simulatedbattery malfunctions. For details regarding the experi-ment setup, the reader is reminded to see subsection 6.2.Both figures provide plots of drift detection scores, givenby the correlation R from the interval [–1, 1] between theknown, introduced drift on one hand side and the simi-larity scores from comparing initial with updated VINs onthe other hand. In Figure 9 the similarity score is given bythe Spearman’s rank correlation and in Figure 10 the Nor-malized Discounted Cumulative Gain (NDCG) is shown.In both cases, we observe that VIN types which utilizealgorithms and domain knowledge to tune the networkstructure, perform better on drift detection than thosewithout modifications. With reference to the VIN model-ing extension presented in this work (cf. section 4), thisrepresents our major finding and endorses our approach.The best model by far is the knowledge structured and ran-dom forest based network (KSN RFR), with a mean score
R > 0.8 and quite low variance over all runs. Interestingly,both figures also display the network type KSN MX, whichis built with the presumably most sophisticated algorithm,on the second place, with a quite broad spectrum of de-tection results. By selecting the best estimation modelfor each system component, the resulting heterogeneousmodel mix is unintentionally compensating system driftsto some extent. We assume that the inconsistent estima-

tion behavior of the different machine learning modelscauses the lower detection score and most importantly thelarge result range. In fact, the KSN MX does not modelsystem behavior representing a stable state, as good as thehomogeneous KSN RFR. While overall, more sophisticatedmodels perform better, Figure 10 also shows some promis-ing results for the CCN network type (CCN LR and CCN SR),which does not use any pre-selection of variables. How-ever, they also come with a quite large estimation range.Furthermore, the Spearman based drift detection providesno clear loser – with approximately –0.3 > R < 0.35 therange of means for CAN, CCN and STM is far from accu-rate detection. With the simple STM network type anda –0.3 > R < 0.0 range, the NDCG based detection hasa clear loser, which in total has a negative, i. e. counter-intuitive, detection record. Regarding machine learningmodel differences, in Figure 9 with the Spearman similar-ity measure we observe that random forest and symbolicregression perform on a similar level, while linear regres-sion based networks lag behind. In Figure 10 with theNDCG similarity measure, however, this trend can not beconfirmed.
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Figure 9. Drift detection results of different VIN models on the described,modified Resinet data sets. The shown Pearson’s R value is calculated be-tween the Spearman based similarity series of initial and re-created VINsand the known drift. Thus, high R-values represent well performing driftdetectors. The different VINs tested are ranked by the mean R-value, whichis illustrated as triangle within the boxplot-box. Different colors have beenapplied for each model type, i. e. STM, CCN, CAN, KSN and its subtype KSN
MX. The warmer the color, the more algorithmic and/or domain expertintelligence was applied during modeling, e. g. KSNMX uses a knowledgebased pre-defined structure and then automatically selects the best avail-able machine learning model, i. e. LR, SR or RFR, per hierarchical layer andcomponent.

In Figure 11 the results for drift root-cause detectionare plotted as percentage of correctly identified root sys-tems of each tested VIN type. In the generated 24 test runs,
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Figure 10. Drift detection results of different VIN models on the described,modified Resinet data sets. The shown Pearson’s R value is calculated be-tween theNDCG based similarity series of initial and re-created VINs andthe known drift.

each of the three systems (A, B, C) is causing a drift equallyoften (i. e. 8 times), meaning there is 33.33% chance for cor-rect detection by randomly guessing the root. Hence, thisscore should be topped to prove that the selected VIN typeand the drift root-cause detection algorithm, presented insection 5, work as intended. As in the case of drift detec-tion, the scores of more sophisticated VINs are superior tothe simpler networks. However, regarding root-cause de-tection, the outcome is even clearer. While simpler typesreach a maximum percentage of 62.5%, all knowledgestructured networks detect at least 83.33% roots correctly.In this case the KSN MX achieves the best score with apercentage of 95.83% which represents a single miss in 24detection runs with differently shaped system drifts. Onthe bottom of the scores, one can observe that some VINsonly perform equal or even worse than random guessing:CCN SR = 33.33%, STM RFR = 25.00%. In terms of the un-derlying machine learning models, no clear winner can bedetermined, which indicates that our approach is agnosticregarding the used modeling algorithms.
7. Conclusion and Outlook

In this work, we described two extensions to the VariableInteraction Network (VIN) data mining technique: Oneconcerns the VIN modeling algorithm and proposes to pre-select variables for the underlying machine learning mod-els using domain knowledge, develop multiple models inparallel and dynamically select the best model found. Theother extension concerns the VIN evaluation algorithmand represents a root-cause detection algorithm to gaindeeper insights from VINs, which are evaluated over timeon changing system behavior. Results from a case study
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Figure 11. Drift root-cause detection results as percentage of correctlyidentified roots per tested VIN type.

dealing with dynamics in a small photovoltaic poweredenergy community showed the potential of the presentedVIN extensions: By using the detailed root-cause detectionalgorithm on domain knowledge structured networks –i. e. by combining both extensions, it was possible to iden-tify hidden system drifts – representing increasing batterymalfunctioning inside the energy community – in most(ca. 95%) of the simulated cases.One obvious extension to this work is the conduction ofan even more comprehensive series of experiments – e. g.using different modeling algorithms, evaluation parame-ters and larger data sets. However, apart from additionaltests and experiments, we want to highlight several ideasfor further extending the VIN method itself:Future work may also consider alternative, moreruntime-consuming variable impact calculation methods,such as the Shapley Value (Shapley, 1953), SHAP (Lund-berg and Lee, 2017), or Feature Interaction using the H-statistic of Friedman and Popescu (2008). With the pro-posed pre-selection of variables more complex methodsmay be reasonable to use, as the curse of dimensionalitycan be kept in check.Inspired by the presented knowledge structured VINs,another idea to improve the networks’ structural correct-ness – in terms of a theoretical perfect fit to the real-worldsystem – is to use domain knowledge to prune VINs afterthe creation algorithm. Hence, the network creation couldbe done as the conventional approach proposes, followedby a removal of unreasonable edges. However, one limitingfactor of this approach may be that the underlying modelswon’t be fully reliable anymore, since they are trained withthe later de-selected variables connections.Concerning root-cause analysis, the presented hotpath-based approach might be enhanced by adding some sortof search-stopping criterion. By this means, not only the



correct, drift-causing branch of a VIN could be identified,but also the effectively drift-causing node – which mightbe different from the root node i. e. some node "earlier"within the directed graph.
Another analysis approach we envisaged for root-causeanalysis on VINs, is to transform the problem into a classi-fication task. For this purpose, data for differently shapeddrifting system states must be collected and labeled be-forehand. By training these states in an offline phase, aswe already did with stable system behavior, we could com-pare a system’s current behavior online to the pre-trainedVINs and identify the respective state based on the highestsimilarity measured. However, this approach demandsthe acquisition of data with labeled system states, whichcan be a major obstacle from our experience with real-world use cases. In comparison, the root-cause analysisapproach we presented in this work, is agnostic to systemstates – with the exception of a labeled "stable" state –which marks one decisive advantage.
Ultimately, we want to highlight that with the approachto de-compile a complex system into smaller, connectedcomponents using existing domain knowledge, a hetero-geneous mix of detail models could be developed, whichwas superior to a single system-wide model. As an exten-sion to this modeling concept, one interesting directionto research might be to investigate the concept’s potentialfor simulation-based optimization scenarios and the fieldof online learning with constantly evolving detail models.
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