Analysing capacity challenges in the Multi-Airport System of Mexico City 

  • Miguel Mujica Mota ,
  • Irene Izco Berastegui  , 
  • c  Javier Faulin 
  • Amsterdam University of Applied Sciences, Weesperzijde 190, Amsterdam, 1097DZ, The Netherlands
  • Institute of Smart Cities, Public University of Navarre, 31006 Pamplona, Spain 
  • Institute of Smart Cities, Dept. Statistics, Computer Science and Mathematics. Public University of Navarre, 31006 Pamplona, Spain 
Cite as
Mujica Mota M., Izco I., and Faulin J. (2022).,Analysing capacity challenges in the Multi-Airport System of Mexico City. Proceedings of the 34th European Modeling & Simulation Symposium (EMSS 2022). , 044 . DOI: https://doi.org/10.46354/i3m.2022.emss.044

Abstract

The relentless growth in Mexico City’s aviation traffic has inevitably strained capacity development of its airport, raising the dilemma between the possible solutions. In the present study, Mexico’s Multi-Airport System is subjected to analysis by means of multi-model simulation, focusing on the capacity-demand problem of the system. The methodology combines phases of modelling, data collection, simulation, experimental design, and analysis. Drawing a distinction from previous works involving two-airport systems. It also explores the challenges raised by the Covid-19 pandemic in Mexico City airport operations, with a discrete-event simulation model of a multi-airport system composed by three airports (MEX, TLC, and the new airport NLU). The study is including the latest data of flights, infrastructures, and layout collected in 2021. Therefore, the paper aims to answer to the question of whether the system will be able to cope with the expected demand in a short-, medium-, and long 
term by simulating three future scenarios based on aviation forecasts. The study reveals potential limitations of the system as time evolves and the feasibility of a joint operation to absorb the demand in such a big region like Mexico City. 

References

  1. MEX. (2021). Statistics and Flight-Schedules. Aeropuerto Internacional de la Ciudad de México. https://www.MEX.com.mx/vuelos 
  2. AIT. (2021). Aerolíneas y Destinos | Aeropuerto Internacional de Toluca.  https://www.aeropuertodetoluca.com.mx/vuelos aerolineas Accessed on April 2021. 
  3. de Luca, S. (2012). Modelling airport choice behaviour for direct flights, connecting flights and different travel plans. Journal of Transport Geography, vol. 22, pp. 148-163.
  4. De Neufville, R. (1995). Management of multi-airport systems. doi:http://dx.doi.org/10.1016/0969- 6997(95)00035-6.
  5. De Neufville, D. R., Belobaba, P., Odoni, A., & Reynolds, T. (2013). Airport Systems, Second Edition: Planning, Design and Management (2nd ed.). McGraw-Hill Education. 
  6. EasyFit. (2021). [Computer software].
  7. Flightradar24. (2021a). Live Flight Tracker - Real Time Flight Tracker Map. https://www.flightradar24.com/data/airports/mx/ departures 
  8. Flightradar24. (2021b). Live Flight Tracker - Real Time Flight Tracker Map.  https://www.flightradar24.com/data/airports/tlc/d epartures 
  9. Flores de la Mota I., Guasch A., Mujica Mota M.A., Piera M.A. (2017). Robust Modelling and Simulation: Integration of SIMIO with Petri nets. Springer, 1st ED, pp. 162.
  10. Fuellhart, K., O’Connor, K., Woltemade, C. (2013). Route-level passenger variation within three multi-airport regions in the USA. Journal of Transport Geography, vol. 31, pp. 171-180.
  11. GACM. (2020, December). Acuerdo por el que se aprueba el Programa Institucional de Grupo Aeroportuario de la Ciudad de México, S.A. de C.V. 2020–2024.  https://www.sct.gob.mx/transporte-y-medicina preventiva/aeronautica-civil/8-noticias-y-sitios de-interes/83-blog-de-la-aviacion-mexicana 2019/ 
    Management, vol. 11, no. 2, pp. 59-68. 
  12. Gilbo, E. P. (1993). Airport capacity: representation, estimation, optimization. IEEE Transactions on Control Systems Technology, vol. 1, no. 3, pp. 144- 154. 
  13. Hess, S., Polak, J.W. (2005). Mixed logit modelling of airport choice in multi-airport regions. Journal of Air Transport 
  14. Ishii, J., Jun, S., Van Dender, K. (2009). Air travel choices in multi-airport markets. 
  15. Loo, B.P.Y. (2008). Passengers’ airport choice within multi-airport regions (MARs): some insights from a stated preference survey at Hong Kong International Airport. Journal of Transport Geography, vol. 16, no. 2, pp. 117-125. 
  16. Marcucci, E., Gatta, V. (2011). Regional airport choice: Consumer behaviour and policy implications. Journal of Transport Geography, vol. 19, no. 1, pp. 70-84. 
  17. Martin, J.C., Voltes-Dorta, A. (2011). The dilemma between capacity expansions and multi-airport systems: Empirical evidence from the industry’s cost function. Transportation Research Part E: Logistics and Transportation Review, vol. 47, no. 3, pp. 382-389. 
  18. Mujica Mota, M., di Bernardi, A., Scala, P., & Delahaye, D. (2019). Simulation-Based analysis of capacity for a multi-airport system: Mexico case study. In the Proceedings of the Air Transport Research Society Conference 2019, Jul. 2–5, Amsterdam, The Netherlands. 
  19. Mujica Mota, Di Bernardi A., Scala P., Ramirez-Diaz G, 2018. Simulation-based Virtual Cycle for Multi level Airport Analysis. Aerospace, Vol 5 No. 2, pp.1- 18. 
  20. Mujica Mota, M., & Flores, I. (2019, March). Model based Methodology for Identifying Capacity Limitations in Airports: Mexico City Airport Case. https://doi.org/10.11128/sne.29.on.10462 
  21. Nesset, E., Helgesen, Ø. (2014). Effects of switching costs on customer attitude loyalty to an airport in a multi-airport region. Transportation Research Part A: Policy and Practice, vol. 67, pp. 240-253. 
  22. Ramanujam, H. Balakrishnan (2009). Estimation of arrival-departure capacity tradeoffs in multi airport systems. Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 
  23. SIMIO. (2021). [Computer software]. SIMIO. https://www.simio.com/index.php 
  24. Yang, Z., Yu, S., Notteboom, T. (2016). Airport location in multiple airport regions (MARs): The role of land 
    and airside accessibility. Journal of Transport Geography, vol. 52, pp. 98-110.