An approximation technique and a possible application for a class of delay differential equations 

  • Stefania Tomasiello ,
  • Luigi Rarità 
  • University of Tartu, Institute of Computer Science, Narva mnt 18, Tartu, 50090, Estonia 
  • University of Salerno, Dipartimento di Scienze Aziendali, Management Innovation Systems, Via Giovanni Paolo II, 132, Fisciano (SA), 84084, Italy 
  • University of Sannio, Dipartimento di Scienze e Tecnologie, Via De Sanctis, Benevento, 82100, Italy
Cite as
Tomasiello S., and Rarità L. (2022).,An approximation technique and a possible application for a class of delay differential equations. Proceedings of the 34th European Modeling & Simulation Symposium (EMSS 2022). , 045 . DOI: https://doi.org/10.46354/i3m.2022.emss.045

Abstract

This paper deals with the analysis of an approximation method based on Differential Quadrature (DQ) rules, that represent a well-known approach to solve numerically ordinary and partial differential equations. An explicit form of the approximate solution through DQ rules is here discussed. Such a form aims to overcome some shortcomings of the traditional DQ method for a class of delay differential equations, such as the modification of the partition in order to consider the delay. Several numerical examples are presented to show the effectiveness of the approach. The analysis is completed via the presentation of a possible application for car traffic modelled by delay differential equations.

References

  1. 1. G. A. Bocharova, F. A. Rihan (2000) Numerical mod elling in biosciences using delay differential equations, J. Comp. Appl. Math. 125:183–199.
  2. M. Dehghan, R. Salehi (2010) Solution of a nonlinear time-delay model in biology via semi-analytical ap proaches, Computer Phys. Comm. 181(7):1255-–1265, 
  3. Deb, K. (2010). Multi-Objective Optimization Using Evolutionary Algorithms. Wiley India.
  4. Endler, K., Scarpin, C., & Steiner, M. (2018). Evaluation of the of Public Network Location Day Care Center: Models and Case Study. IEEE Latin America Transactions, 16(7), 2013–2019. https://doi.org/10.1109/tla.2018.8447370
  5. F. Al Basir, A. Banerjee, S. Ray (2019) Role of farming awareness in crop pest management - A mathematical model, J. Theor. Biol. 461:59–67 
  6. B. Pell, A. E. Kendig, E. T. Borer, Y. Kuang (2018) Modeling nutrient and disease dynamics in a plant pathogen system, Math. Biosci. Eng. 16(1): 234—264, 
  7. L.R.M. Wilson, N. C. Cryerb, E. Haughey (2019) Simu lation of the effect of rainfall on farm-level cocoa yield using a delayed differential equation model, Scientia Horticulturae, 253:371–375 
  8. L. Rarità, C. D’Apice, B. Piccoli and D. Helbing (2010) Sensitivity analysis of permeability parameters for flows on Barcelona networks, J. Differ. Equ. 249(12): 3110 – 3131. 
  9. M. J. Lighthill and G. B. Whitham (1955) On kinematic waves: II. A theory of traffic on long crowded roads, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 229: 317 – 345. 
  10. P. I. Richards (1956) Shock waves on the highway, Oper. Res. 4: 42 – 51. 
  11.  L. Fox, D.F. Mayers, J.A. Ockendon, A.B. Tayler (1971) On a functional differential equation, J. Inst. Math. Appl. 8: 271–307. 
  12. M. Sezer, A. Akyuz-Dascioglu, A Taylor method for numerical solution of generalized pantograph equa tions with linear functional argument (2007) J. Comp. Appl. Math. 200:217–225. 
  13. M. Sezer, S. Yalcinbas, M. Gulsu (2008) A Taylor poly nomial approach for solving generalized pantograph equations with nonhomogenous term, Int. J. Comp. Math. 85(7):1055—1063. 
  14.  M. M. Bahs, M. Cevik, M. Sezer (2015) Orthoexponen tial polynomial solutions of delay pantograph differ ential equations with residual error estimation, Appl. Math. Comp. 271:11—21. 
  15. X. Y. Li, B. Y. Wu (2014) A continuous method for nonlocal functional differential equations with de layed or advanced arguments, J. Math. Anal. Applic. 409(1):485-–493. 
  16. E.H. Doha, A. H. Bhrawy, D. Baleanu, R. M. Hafez (2014) A new Jacobi rational—Gauss collocation method for numerical solution of generalized panto graph equations, Appl. Num. Math. 77:43—54. 
  17. N. R. Anakira, A. K. Alomari, I. Hashim (2013) Optimal homotopy asymptotic method for solving delay differ ential equations, Math. Prob. Eng. Article ID 498902, 11 pages. 
  18. A. K. Alomari, M. S. Noorani, and R. Nazar (2009) Solu tion of delay differential equation by means of homo topy analysis method, Acta Appl. Math. 108(2):395— 412. 
  19. C. Hwang, Y.-P. Shih (1982) Laguerre series solution of a functional differential equation, Int. J. Syst. Sci. 13(7):783—788. 
  20. Q. Huang, X. Xu (2016) Continuous Galerkin meth ods on quasi-geometric meshes for delay differential equations of pantograph type, Discr. Cont. Dyn. Sys. 36(10):5423–5443. 
  21.  R. Bellman, J. Casti (1971) Differential quadrature and long-term integration. J. Math. Anal. Appl. 34:235– 238. 
  22. S. Tomasiello (2011) DQ based methods: Theory and application to engineering and physical sciences, in: Handbook of Research on Computational Science and Engineering: Theory and Practice. Edited by J. Leng and W. Sharrock, IGI Global, pp. 316–346. 
  23. F. Tornabene, N. Fantuzzi, F. Ubertini, E. Viola (2015) Strong formulation finite element method based on differential quadrature: A survey, Appl. Mech. Rev. 67(2):50–80. 
  24. S. Tomasiello (2012) Some remarks on a new DQ based method for solving a class of Volterra integro differential equations, Appl. Math. Comp. 219:399– 407. 
  25. W. Dong, Y. Ding, . Zhu, H. Ding (2017) Differential quadrature method for stability and sensitivity anal ysis of neutral delay differential systems, J. Dyn. Sys. Measur. Control, ASME Trans. 139(4):044504 
  26. L. Rarità (2013) A model for irregular phenomena in urban traffic, Proceedings of EMSS 2013 (25th Euro pean Modeling and Simulation Symposium), Athens, Greece, September, 25th-27th, 2013: 601–610. 
  27. A. Cascone, C. D’Apice, B. Piccoli, L. Rarità (2007) Op timization of traffic on road networks, Math. Models Methods Appl. Sci., 17(10):1587–1617. 
  28. A. Cascone, C. D’Apice, B. Piccoli, L. Rarità (2008) Cir culation of car traffic in congested urban areas, Com mun. Math. Sci., 6(3):765–784. 
  29.  A. Cascone, C. D’Apice, B. Piccoli, L. Rarità (2008) Cir culation of car traffic in congested urban areas, Com mun. Math. Sci., 6(3):765–784. 
  30. R. Frattaruolo, R. Manzo, L. Rarità (2008) Simula tion and optimization of vehicular flows in a harbour, Proceedings of EMSS2008 (20th European Modeling and Simulation Symposium), Campora San Giovanni, Amantea (CS), Italy, September 17th-19th, 2008: 638– 646. 
  31. M. Garavello, B. Piccoli (2006) Traffic Flow on Net works. American Institute of Mathematical Sciences, Springfield.

  32. Morrison, D. R., Jacobson, S. H., Sauppe, J. J., & Sewell, E. C. (2016). Branch-and-bound algorithms: A survey of recent advances in searching, branching,