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Abstract
This paper deals with the analysis of an approximation method based on Differential Quadrature (DQ) rules, that represent awell-known approach to solve numerically ordinary and partial differential equations. An explicit form of the approximate solutionthrough DQ rules is here discussed. Such a form aims to overcome some shortcomings of the traditional DQ method for a class of delaydifferential equations, such as the modification of the partition in order to consider the delay. Several numerical examples are presentedto show the effectiveness of the approach. The analysis is completed via the presentation of a possible application for car trafficmodelled by delay differential equations.
Keywords: Differential Quadrature; Pantograph; Explicit approximation; Traffic networks.

1. Introduction

There are many examples of Delay Differential Equations(DDEs) in several fields. Most popular applications are inbioscience, regarding population dynamics, epidemiology,physiology, immunology, neural networks and cell kinet-ics (1; 2). Recently, DDEs have found application in theagri-food field, e.g. to model pests and related dynamics(3; 4) or to simulate the effect of rainfall on some crops(5). Another interesting application of DDEs deals withroad traffic modelling: in (6) the authors consider a sim-plified two-phase model for flows on roads, divided intoroad sections of homogeneous capacity and nodes for theirconnections. Traffic phenomena along the sections fol-low the Lighthill-Whitham-Richards model (LWR, see (7)and (8)), but with a simplified representation that reducesthe Partial Differential Equation (PDE) approach to a DDE-based one.
In this note, the following problem is considered

y′(z) = r(z)y(z) + p(z)f(y(αz)) + q(z), z ∈ [0,L], (1)
for any L ∈ R+, under the condition y(z1) = y1, with

y1 ∈ R, and where r(z), p(z), q(z) are continuous functionsand 0 < α < 1.Eq. (1) is the so-called pantograph equation (9), whichis a particular case of DDE with the delay as a continu-ous function. Many approaches for solving pantograph-type delay differential equation have been proposed (e.g.(10)-(18)). Some methods are based on a Taylor series ex-pansion (10)-(11), but in some cases they do not providevery accurate and stable results. Other numerical methodsseem to need a very dense partition in order to achieve ahigher accuracy (e.g. see (13), (14), (18)). Finally, there areapproaches which seem to be accurate enough, but theydo not reproduce exactly the initial conditions (12) or theyneed a suitable initial guess for the convergence (15).The approach herein proposed is based on Differential
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Quadrature (DQ) rules. DQ rules were introduced by Bell-mann and Casti in 70s (19) as an efficient way to approxi-mate derivatives by means of a weighted sum of functionalvalues at certain grid points. Since then, a huge literatureon the application of DQ to several problems in differentfields appeared (one may refer to the review articles (20),(21)). The DQ Method (DQM) is substantially a polynomialapproximation and this fact can be exploited to write theapproximate solution in explicit form as shown in (22).This kind of approximate solution is herein used to solvethe considered class of DDEs. It should be pointed out thatthe usual application of DQ rules to Eq. (1) would be cum-bersome, because one should consider the single delay bymeans of additional grid points and convergence mightnot be achieved (23). A numerical comparison against thesolutions available in literature is presented, showing agood accuracy even when a small number of grid points ischosen.The paper also presents a possible application for cartraffic modelling, according to the approach presentedin (6) and simulated in (24). Indeed, DDEs are a system-atic way to foresee the behaviour of cars on roads, togetherwith other consolidated studies, see for instance (25), (26),and (27) for real scenarios. In particular, in our case eachroad has two types of regimes, free and congested, whoseevolution is determined by possible delays. This is exactlywhat normal traffic usually considers, in terms of conges-tion due to lack of capacities, traffic jams and spill-overeffects. The regulation of flows at intersections is obtainedby permeability parameters that, assumed as controls, al-low discriminating the amount of traffic in the variousparts of a car traffic network.In particular, besides dynamics on roads described byDDEs, flows at intersections are found via the followingrules (28): (a) the incoming traffic goes to the outgoingroads according to fixed statistical parameters; (b) driversbehave in order to maximize the flux through the inter-sections.As the possible analysis of the previous car traffic modelleads to "nested" equations, that cannot be solved analyti-cally, this paper presents a simulation scenario obtained bythe discretization of DDEs via DQ rules. From one side, theresults are quite similar to those presented in (24). Fromthe other, there are advantages in terms of approxima-tion errors, as foreseen by the classical study presented forDDEs inside the paper.The work is structured as follows. In Section 2 themethodology is presented. Section 3 is devoted to numeri-cal experiments. Section 4 provides details for applicationsof DDEs to car traffic modelling. Finally, Section 5 givessome conclusions.
2. Methodology

Let y(z) be a continuous function in the interval I = [0,L]and let 0 = z1 < z2 < . . . < zN = L be a fixed, thougharbitrary, partition of Iwith norm h = max
j

|zj+1 – zj|. For

a uniform partition, it is h = L/(N – 1) and zj = (j – 1)h.The partition can be uniform or not. In the latter case,an usual choice is the Gauss-Chebyshev-Lobatto (GCL)distribution

zi = L2
[

1 – cos i– 1
N – 1π

]
, i = 1, 2, . . . ,N. (2)

According to the DQ rules, the pth order derivative of
y(z) is approximated by a weighted sum of the functionalvalues at the grid points yj = y(zj)

dp
dzp y(zi) = N∑

j=1
A(p)
ij yj, i = 1, . . . ,N, (3)

where A(p)
ij are the weighting coefficients, which are usu-

ally computed as the pth–order derivative of the jth La-grange basis polynomial at the point zi. The explicit DQapproximate formula is (22)

y(z) = y1 + N–1∑
r=1

N∑
s=1
A(r)1s ys z

r

r! . (4)
By substituting in the given equation (1) the approxi-mate formula (4), the following system of algebraic equa-tions is obtained
N∑
j=1
A(1)
ij yj = r(zi)yi + p(zi)f(y1 + N–1∑

r=1
N∑
s=1
A(r)1s ysαz

r
i
r! ) + g(zi),

(5)
i = 1, . . . ,N,, which can be easily solved with the help ofcomputing tools.It is worth mentioning that for initial value problems,the approximate formula (4) reproduces the initial condi-tions y(r)(0) = y(r)1 , with r = 1, . . . ,p– 1 and y(r)1 ∈ R, since

y(r)(0) = ∑N
k=1 A(r)1k yk.

3. Numerical results

This section is devoted to numerical experiments. In allthe computations, GCL points were used. The results bythe proposed approach, here indicated by the acronymTDQ (standing for expliciT DQ), were compared againstthe solutions available in literature, in particular the onesby Taylor Series based Method (TSM) (10),(11). In all thetables,Nwill denote the number of terms in TSM and TDQapproaches. It should be pointed out that, for the TDQ, thenumber of grid pointsN have to be intended asN– 1 termsin the explicit formula (4), that isN = N– 1. With regard toTSM, the value ofN has been increased by 1 with respect to
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Table 1. Example 1: absolute errors

TSM (z N = 9)(10 TSM () N = 13) (10 TDQ () N TDQ (= 6) N TDQ (= 9) N = 13)
9.812E-176.275E-121.480E-072.220E - 161.440E - 120.2 3.851E-163.408E-123.367E-071.332E-157.524E-100.4 8.525E-165.730E-124.119E-072.189 E - 132.953E-080.6 3.673E-141.516E-114.015E-079.361E-124.018E-070.8 1.151E-149.490E-115.556E-071.729E-103.059E-061

Table 2. Example 2: absolute errors, χ = 0.2
z TSM (N = 13)(11 CM (N=81) () 13 JRC (N=64) () 14 TDQ () N TDQ (= 10) N = 12)2–1 1.57E-121.07E-123.93E-143.33E-111.24E-102–2 5.14E4.92E-142.16E-144.13E-119.74E-11 –132–3 3.07E-141.09E-141.66E-154.62E-117.00E-112–4 1.55E-151.86E-146.21E-154.89E-119.14E-112–5 1.33E-155.63E-143.68E-145.05E-115.28E-112–6 1.44E-155.39E-144.54E-144.74E-111.95E-11

the one indicated in (10),(11), since the terms of the Taylorexpansion in those papers were numbered starting with 0.
3.1. Example 1

This example was taken from (10). Here r(z) = 1/2, p(z) =1/2 exp (z/2), f(y) = y, α = 1/2, q(z) = 0, y(0) = 1, L = 1.The exact solution is y(z) = exp (z). The absolute errorsof the approximate solution by the present method (TDQ)are tabled in Table 1 and compared against the TSM (10).As one can see, by assuming the same N, the highestabsolute error by TDQ is four order lesser than the one byTSM. One can also notice that a similar (though one orderlesser) highest absolute error is obtained by the TDQ, butthrough a smaller N (e.g. see TSM, N = 9 and TDQ, N = 6).
3.2. Example 2

The second example was taken from (11) and (12). Here
r(z) = –1, p(z) = χ/2, f(y) = y,α = χ, q(z) = –χ exp (–χz)/2,
y(0) = 1, with χ a real parameter.The exact solution is y(z) = exp (–z). The absolute er-rors of the approximate solution by the present method for
χ = 0.2 are tabled in Table 2 and compared against the TSM(11) and the most recent Continuous Method (CM) (13) andthe Jacobi rational—Gauss collocation method (JRG) (14).The errors by the proposed method are lesser than theones by the TSM and are comparable to or slightly lesserthan the ones by the other considered approaches, butthrough a considerably smaller number of grid points.The case χ = 0.5 was discussed in (12), where Orthog-onal Exponential Polynomials (OEP) were used to solvepantograph equations. In Table 3, the results by the pro-posed TDQ and by using the approximate solution reportedin (12) are compared. It is the case to point out that theproposed approach, differently from the one in (12), re-produces exactly the initial condition. For N = 11, themaximum error, in the considered range, has the sameorder.

Table 3. Example 2: absolute errors, χ = 0.5
z OEP (12 TDQ () N TDQ (= 6) N = 11)001.10E-110 1.45E-141.73E-066.89E-110.2 5.99E-134.48E-079.58E-110.4 8.27E-121.79E-061.01E-100.6 5.49E-111.11E-069.53E-110.8 2.33E-108.17E-078.40E-111

3.3. Example 3

This example was considered in (15), (16).Here p(z) = –2, f(y) = y2, α = 1/2, q(z) = 1, y(0) = 0,
L = 1.The exact solution is y(z) = sin z.The absolute maximum error for solving this exampleby means of Homotopy Asymptotic Method is 1.2E – 06(16) and Optimal Homotopy Asymptotic Method (OHAM)is 4E– 08 (15). It should be pointed out that the latter isreferred to a polynomial of order 7. Besides, OHAM needsa suitable initial guess for the convergence. By means ofthe proposed method with N = 8, that is a polynomial oforder 7, the maximum absolute error is 2.58E– 09.
3.4. Example 4

The fourth example was taken from (10), (17). For thisexample, it is r(z) = p(z) = –1, f(y) = y, α = 0.8, q(z) = 0,
y(0) = 1.There is no exact solution. Numerical solutions aregiven in Table 4. The proposed approach shows again afaster convergence with respect to TSM.
3.5. Example 5

This example was taken from (18), where a ContinuousGalerkin Method (CGM) was used. It is r(z) = –1, p(z) =0.5, f(y) = y, α ∈ {0.1, 0.5, 0.9}, q(z) = cos(z) + sin(z) –0.5 sin(αz), y(0) = 0, L = 1.The exact solution is y(z) = sin(z). We refer herein tothe same error measure adopted in (18), that is the L∞norm e∞. For the piecewise cubic CG solution in (18) , for



Table 4. Example 4: numerical solutions
z Laguerre (n=30) (17 TSM () N = 9) (10 TSM () N = 12) (10 TDQ () N TDQ (= 5) N = 7)

111110
0.6646910.6647070.6646910.6646910.6646910.2
0.4335610.4335580.4335610.4335610.4335610.4

0.2764820.2764990.2764820.2764830.2764820.6
0.1714840.171490.1714840.1714940.1714840.8
0.102670.1026710.10267050.1027440.1026701

Table 5. Example 5: L∞ norm
α h CGM (18 TDQ) 2.93E-091.48E-050.2220.1 3.09E-111.03E-060.1110.1 2.96E-09n.a.0.2220.5 2.56E-132.69E-090.1250.5

α = 0.1 and α = 0.5, the errors are listed in Table 5. Asone can see, by using the same partition norms in (18),the proposed TDQ allows a higher accuracy. For the case
α = 0.9, one has by the CGM e∞ = 2.69E – 09 with h =0.025. Instead, by TDQ, one gets e∞ = 3.06E – 09 with
h = 0.222, that is the same order error, but by means of apartition norm ten times about higher, implying a lowercomputational effort.
3.6. Example 6

As the previous one, this example was taken from (18).In this example, α is not a constant, but it is α(z) = z.Besides, r(z) = –1, p(z) = 0.5, f(y) = y, q(z) = cos(z) –sin(z) – 0.5 sin(αz), y(0) = 1, L = 0.5. The exact solutionis y(z) = cos(z). By means of CGM, with h = 0.1250, onehas e∞ = 1.8848E– 06. By assuming a partition with thesame norm, one has e∞ = 3.16E– 10.
4. Application to car traffic

This section deals with an application of DDEs to car traffic.First, a possible model, already described in (6) and (24),is shortly presented. Then, some simulations are shown.
4.1. A possible model with DDEs

Following (6) and (24), a road section j, of length Lj andwith maximal possible speed of cars V0
j , has: an arrival

flow Aj (t), t ≥ 0, that represents the inflow of cars intothe upstream end; a departure flow Oj (t), t ≥ 0, that isthe flow of cars which leave road section j at its down-

stream end. Functions Aj (t) and Oj (t) are upper limitedand their bounds are defined, see (6), assuming that, forroad section j, there exists the permeability parameter
γj (t) ∈ [0, 1], t ≥ 0, that describes the amount of vehiclesthat go out. Notice that γj (t) has the following interpre-tation: γj = 0 indicates a red or amber light; γj = 1 cor-responds to a green light, and all cars can flow out fromroad section j; 0 < γj < 1 represents a green light for asituation in which not all vehicles can go out immediatelyfrom road section j, hence indicating that queues still oc-cur nearby the road traffic node. Notice that 0 < γj ≤ 1 alsoindicates situations in which there are not traffic lightsat road intersections, but vehicles are free to circulate viasome yielding criteria. The number of delayed vehiclesfor road section j, ∆Nj, has an evolution described by thegeneric equation:

·∆Nj = RS
(
Aj

(
t– Lj
V0
j

)
,Oj (t)

)
, (6)

where RS (·) is a function that depends on the dynamicsat the intersection at which road section j is connected.Notice that:
• RS (·) depends on two traffic rules, see (28): (a) at eachtraffic nodes, drivers distribute according to fixed pa-rameters; (b) respecting rule (a), drivers behave so asto maximize the car flux at the traffic node.• as Lj

V0
j
≥ 0, t– Lj

V0
j

represents a delay term that can be eas-
ily expressed as αz, by a variable change, with 0 < α < 1.This suggests that (6) is seen as a pantograph-typeDDE, where the dependence on permeability parame-ters is expressed by the departure flows.
As (6) clearly depends on the behaviour of cars in otherparts of the network, the evolutions are represented as acontrol system of form:

·x = f (x,γ,γδ) , (7)
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where x is the state (the number of delayed vehicles ∆N),
γ is the control (the permeability parameters), and γδ aredelayed controls. Formulation (7) allows either to definean optimal control problem for the minimization of queueson roads, see (6), or the definition of a precise theoreti-cal background for the behaviour of traffic. In short, thevariation of any control parameter γ influences the evo-lution of the couple (A,O) through RS; in turn the valuesof (A,O) influence themselves through RS and determinethe continuous dynamics of ∆N, and so on. This suggeststhe adoption of needle variations (for an exhaustive pre-sentation, see (6) and (24)) of permeability parameters tomanage the overall features of the network. In particular,it is sufficient a unique variation of just a permeability pa-rameter to provoke jumps in incoming and outgoing flows.Such a phenomenon has to be adequately discussed in anumerical way, thus justifying the adoption of DQ rulesfor DDEs of the model for car traffic.
4.2. A numerical simulation

We present the effect of a needle variation for a single per-meability parameter for a node in a test network, whosetopology is similar to the one presented in Figure 5 of (24).We have two different road intersections, indicated by (i, j)and (i, j + 1), three horizontal roads (Rij–1,Rij andRij+1) andfour vertical roads (Cij, Ci+1j, Ci–1j+1, Cij+1). The other fea-tures of the network and simulation parameters are notreported completely here, as they are fully described in(24). Also in this case, we assume a needle variation for
γRij (t) as follows:

γRij (t) =
{ 0.5, t ∈ [0, t1] ∪ ]t2, T] ,0.2 t ∈ ]t1, t2] , (8)

where t1 = 11.5 min, t2 = 13 min and T = 25 min is the totalsimulation time.Figure 1 presents∆NRij (t) versus tdue to the needle vari-ation for γRij (t). It is shown that, when t ≤ t0 = 2, ∆NRij (t)decreases as solutions of RS at nodes (i, j) and (i, j + 1) im-
ply ∆NRij (0) ≥ RS

(
ARij (t– t0) ,ORij (t)). At t = t1, the

needle variation for γRij (t) creates a needle variation for
ORij (t), that determines an immediate change of slope for
∆NRij (t). At t = t2, the needle variation for γRij (t) van-ishes, ∆NRij (t) immediately changes its own slope and
ORij (t) comes back to the nominal value imposed by RSat node (i, j). At t3 = 14.5 min, ∆NRij (t) reaches its max-imal value, while ARij (t) follows the delayed ORij (t). At
t4 = t3 + t0, ∆NRij (t) starts to decrease and becomes con-
stant for t ∈ [t5, t6[, with t5 = t2 + 2t0 and t6 = t4 + t0. At
t6, ∆NRij (t) starts to increase and grows until t7 = 20 min,instant at which ∆NRij (t) assumes the maximal value.

Figure 1. ∆NRij (t) versus t.

5. Conclusions

In this paper, an explicit form of the approximate solu-tion through DQ rules is used for solving a class of DDEs.The above-mentioned formula is an alternative way forapplying DQ rules, aiming at providing
• the DQ solution in an explicit form, whereas the clas-sical DQ schemes allow to find just some functionalvalues;• a solution procedure for a class of DDEs, without modi-fying the chosen partition in order to consider the delay,as implied by the usual DQ method;• a solution which reproduces exactly the initial condi-tion, differently from other methods used for solvingDDEs, such as for instance OEP (12).

Besides, the numerical results showed that the pro-posed approach allows a higher accuracy, through a lessernumber of grid points, when compared to some methods,such as TSM (10; 11), CM (13) , JRC (14), CGM (18).Finally, a possible application for car traffic is presented,emphasizing the role of DDEs for road traffic models.As a future work, a marching scheme based on thisexplicit form will be investigated for long-time integra-tion, a matter not deeply discussed for the class of DDEshere considered. For car traffic models with DDEs, furtherstudies will be developed in order to achieve optimizationprocedures to minimize queues on roads.
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