Simulation of interactions of road vehicles and pedestrians at public transport nodes: Pilot study 

  • Antonín Suk ,
  • Jakub Hora, 
  • Josef Bulíček
  • a,b,c University of Pardubice, Faculty of Transport Engineering, Studentská 95, CZ-532 10, Pardubice, Czech
Cite as
Suk A., Hora J., and Bulíček J. (2022).,Simulation of interactions of road vehicles and pedestrians at public transport nodes: Pilot study. Proceedings of the 34th European Modeling & Simulation Symposium (EMSS 2022). , 048 . DOI: https://doi.org/10.46354/i3m.2022.emss.048

Abstract

The paper focuses on the specific dynamics between pedestrians and road vehicles observed at the public transport nodes. The emphasis is on the organization of traffic flows in terminals or locations with interchange stops. There are specific situations that occur in such cases as increased pedestrians’ demand for crossing by bus arrival or change of periods with rush and low traffic (in the case of almost collective arrival or departure of more buses to/from a node). The study is conceived as a pilot study; 
emphasis is therefore put on the definition of a set of such situations and on the assessment of the basic attributes influencing them. This is also the reason why the study deals with only a limited number of public transport nodes; crucial is the design of the nodes and their functional links. This study aims to define these interactions and provide an input framework that allows modeling/simulating the mentioned situations. Stochastic models will be developed on two levels – level of microsimulation using PTV Vissim and mesoscopic simulation represented by own designed model using Visual Basic for Applications and dedicated especially to testing of newly modeled situations. 

References

  1. Bažant, M., Kavička, A., Diviš, R. & Varga, M. (2019). Simulation-Based Rail Traffic Optimisations Applying Multicriterial Evaluations of Variants. MENDEL. Volume 25. Pages 139-146. ISSN 2571-3701. Retrieved from https://doi.org/10.13164/mendel.2019.1.139.
  2. Bohari, Z. A., Bachok, S. & Osman, M. M. (2016). Simulating the Pedestrian Movement in the Public Transport Infrastructure. Procedia - Social and Behavioral Sciences. Volume 222. Pages 791-799. ISSN 1877-0428. Retrieved from https://doi.org/10.1016/j.sbspro.2016.05.167.
  3. Caprara, A., Galli, L. & Toth, P. (2011). Solution of the Train Platforming Problem. TRANSPORTATION SCIENCE. Volume 45. Page 246-257. ISSN 1526-5447. Retrieved from https://doi.org/10.1287/trsc.1100.0366.
  4. Celinski, I. (2020). Study of Characteristics of Road Traffic Streams in Pedestrian Crossing – Affected Areas. Modern Traffic Engineering in the System Approach to the Development of Traffic Networks. Volume 1083. Pages 114-130. ISSN 2194-5357. Retrieved from https://doi.org/10.1007/978-3- 030-34069-8_10.
  5. Chen, Y., Li, L., Shen, Y. & Liu, B. (2017). A Simulation Optimization Method for Design and Control of Signalized Intersections in Urban Areas. European Modeling and Simulation Symposium (EMSS). Pages 1-7. Retrieved from http://www.msc les.org/proceedings/emss/index.html.
  6. Feng, R. & Li, P. (2022). Sample recycling method – a new approach to efficient nested Monte Carlo simulations. Insurance: Mathematics and Economics. Volume 105. Pages 336-359. ISSN 0167-6687.
  7. Flores, I., Mota, M.M. & Hernádez, S. (2015). Urban Transport Infrastructure: A Survey. European Modeling and Simulation Symposium (EMSS). Pages 126-136. Retrieved from http://www.msc 
    les.org/proceedings/emss/index.html. 
  8. Gitelman, V., Carmel, R., Pesahov, F. & Hakkert S. (2017). Exploring Safety Impacts of Pedestrian Crossing Configurations at Signalized Junctions on Urban Roads with Public Transport Routes. Transportation Research Procedia. Volume 25. Pages 2044-2060. ISSN 2352-1465. Retrieved from https://doi.org/10.1016/j.trpro.2017.05.399.
  9. Krivda, V., Petru, J., Macha, D. & Novak, J. (2021). Use of Microsimulation Traffic Models as Means for Ensuring Public Transport Sustainability and Accessibility. Sustainability. Volume 13. ISSN 2071- 1050. Retrieved from https://doi.org/10.3390/su13052709.
  10. Kormanová, A. (2012). Combining social forces and cellular automata models in pedestrians’ movement simulation. Journal of Information, Control and Management Systems, Vol. 10, (2012), No. 1. Pages 61-70. DIFFUSION MODELLING (psu.edu)
  11. Lakhotia, S., Lassarre, S., Rao, K. R. & Tiwari, G. (2020). Pedestrian accessibility and safety around bus stops in Delhi. IATSS Research. Volume 44. Pages 55-66. ISSN 0386-1112. Retrieved from https://doi.org/10.1016/j.iatssr.2019.07.001. 
  12. Novotný, R. & Kavička A. (2018). Different Traffic Submodels Within Scalable Unitary Hybrid Simulator Related to Railway Systems. European Modeling and Simulation Symposium (EMSS). Pages 137-142. Retrieved from http://www.msc les.org/proceedings/emss/index.html. 
  13. Pravinvongvuth, S., & Chen, A. (2005). Adaptation of the paired combinatorial logit model to the route choice problem. Transportmetrica, 1(3), 223-240.
  14. Pulugurtha, S. S. & Srirangam, L. P. (2021). Pedestrian safety at intersections near light rail transit stations. Public Transport. ISSN 1613-7159. Retrieved from https://doi.org/10.1007/s12469-021-00276- 
    y. 
  15. Rossetti, S., Tiboni, M., Vetturi, D., Zazzi, M. & Caselli, B. (2020). Measuring Pedestrian Accessibility to Public Transport in Urban Areas: a GIS-based Discretisation Approach. European Transport\Trasporti Europei. Issue 76. Paper n° 2. ISSN 1825-3997. Retrieved from http://www.istiee.unict.it/.
  16. Široký, J., Nachtifall, P., Tischer, E. & Gašparík, J. (2021). Simulation of Railway Lines with a Simplified Interlocking System. Sustainability. 2021, Volume 13, Issue 3, 1394. Retrieved from https://doi.org/10.3390/su13031394.