Physical Display for Visualization of Three-Dimensional Surfaces 

  • Lucas Moreira Dias  ,
  • Carlos Henrique de Azevedo Pires Soares Coutinho, 
  • Maria Celia Santos Lopes, 
  • Robson da Cunha Santos, 
  • Gerson Gomes Cunha 
  • a,c Universidade Federal do Rio de Janeiro, LAMCE/COPPE/UFRJ, Rio de Janeiro, RJ, Brasil
  • b,d Instituto Federal Fluminense, IFF-RJ, Macaé, RJ,Brasil 
Cite as
Dias L.M., de Azevedo Pires Soares Coutinho C.H., Lopes M.C.S, Santos R.D.C., and Cunha G.G. (2022).,Physical Display for Visualization of Three-Dimensional Surfaces. Proceedings of the 34th European Modeling & Simulation Symposium (EMSS 2022). , 049 . DOI: https://doi.org/10.46354/i3m.2022.emss.049

Abstract

This project is a technological innovation that aims to develop a reconfigurable device of elevation and depth data. In this way, a physical display in 16:9 resolution is created, which will make it possible to display information in three dimensions with the use of elevation data through the implementation of an application that controls 144 servo motors available in a 16x9 matrix, as well as implementing applications to control this display. Based on an Engineering Method, the project consists of a wooden structure with 144 coupled servo motors. Above the table, there is a white knitted fabric, on which the servo motors are attached and perform vertical movements, pulling and lifting the fabric. Attached to the wooden structure, there is another structure in which a projector is attached and projects the images to be displayed over the fabric. This project can have numerous multidisciplinary applications. With the final result of this project, some goals were achieved, such as the development of interactive applications and the way this project can be applied in several different contexts, from school teaching to industrial application.

References

  1. Geng, J. (2013). Three-dimensional display technologies. Advances In Optics And Photonics, 5(4), 456-535. http://dx.doi.org/10.1364/AOP.5.000456
  2. Ishii, H. (2008). Tangible user interfaces. In A, Sears & J, Jacko (Eds.). The human–computer interaction handbook: Fundamentals, evolving technologies and emerging applications (2nd ed., pp. 469-487). New York, NY: Lawrence Erlbaum Associates.
  3. Ishii, H., & Ullmer, B. (1997). Tangible bits: Towards seamless interfaces between people, bits and atoms. Proceedings of the Conference on Human Factors in Computing Systems, USA, 234-241. 
  4. Leithinger, D., Follmer, S., Olwal, A., & Ishii, H. (2015). Shape displays: Spatial interaction with dynamic physical form. IEEE Computer Graphics and Applications, 35(5), 5-11. https://doi.org/10.1109/MCG.2015.111
  5. Marieb, E.N., & Hoehn, K.N. (2012). Human anatomy & physiology (9th ed.). London, England: Pearson.
  6. Niiyama, R., & Kawaguchi, Y. (2008). Gemotion screen: A generative, emotional, interactive 3D display. Proceedings of the 2008 ASIAGRAPH Conference, Shanghai, China, 115-120. 
  7. Schlick, C., Ziefle, M., Park, M., & Luczak, H. (2008). Visual displays. In A, Sears & J, Jacko (Eds.). The human–computer interaction handbook: Fundamentals, evolving technologies and emerging applications (2nd ed., pp. 201-227). New York, NY: Lawrence Erlbaum Associates.
  8. Ullmer, B., & Ishii, H. (2000). Emerging frameworks for tangible user interfaces. IBM Systems Journal, 39(3-4), 915- 931. http://dx.doi.org/10.1147/sj.393.0915
  9. University Of California Campus Davis. (2021, Feb 22). Augmented Reality Sandbox. Retrieved from https://arsandbox.ucdavis.edu/about/
  10. Iwata, H. (2008). Haptic interface. In A, Sears & J, Jacko (Eds.). The human–computer interaction handbook: Fundamentals, evolving technologies and emerging applications (2nd ed., pp. 229-245).