Flexible Pricing based on Strategic Engineering in Retail Sector

  • Agostino G. Bruzzone  ,
  • Kirill Sinelshchikov,
  • Wolfhard Schmidt, 
  • Marina Cardelli
  • a,b,c,d Simulation Team, via Magliotto 2, 17100 Savona, Italy 
  • a,b,d SIM4Future, via Trento 34, Genova, 16145, Italy 
  • Ewwol Solutions Ltd, Ulica Marii Konopnickiej 47, 86-032 Niemcz, Poland 
Cite as
Bruzzone A.G., Sinelshchikov K., Cardelli M., Schmidt W. (2022).,Flexible pricing based on strategic engineering in retail sector. Proceedings of the 34th European Modeling & Simulation Symposium (EMSS 2022). , 051 . DOI: https://doi.org/10.46354/i3m.2022.emss.051
 Download PDF

Abstract

The paper proposes utilization of advanced data analytics solutions to support decision makers in retail in their work of identification of best price for sold goods in order to maximize revenue. The authors analyze principal data which required to perform the operation, as well as highlight difficulties related to evaluation and testing of the decision support system.

References

  1. Bottani, E., Ferretti, G., Montanari, R., Vignali, G., Longo, F., & Bruzzone, A. G. (2013). Design of supply networks with optimized safety stock levels. International Journal of Engineering, Science and Technology, 5(2), 93-109. 
  2. Braglia, M. & Frosolini, M. (2014). An integrated approach to implement project management information systems within the extended enterprise. International Journal of Project Management, 32(1), 18-29.
  3. Bruzzone, A. G., Longo, F., Nicoletti, L., Chiurco, A. & Bartolucci, C. (2013). Multiple forecasting algorithms for demand forecasting in the fashion industry. In 2013 8th EUROSIM congress on modelling and simulation (pp. 421-426). IEEE.
  4. Bruzzone A., Massei, M., Sinelshchikov, K., Fabbrini, G., Gotelli, M. & Molinari., A (2019). Machine learning to support industrial digitalization and business transformation. In proceedings of 31st European Modeling and Simulation Symposium, EMSS 2019, pp. 390-393.
  5. Bruzzone, A. G., Sinelshchikov, K., Massei, M. & Schmidt, W. (2020). Artificial Intelligence to Support Retail Sales Optimization. In proceedings of 32nd European Modeling & Simulation Symposium.
  6. Bruzzone, A. G., Massei, M., Sinelshchikov, K. & Schmidt, W. (2021). Machine Learning and Genetic Algorithms to Improve Strategic Retail Management. Proceedings of the 20th International Conference on Modeling & Applied Simulation (MAS 2021), pp. 186-189.
  7. Bruzzone, A. G., Massei, M. & Frosolini, M. (2022). Redesign of Supply Chain in Fashion Industry based on Strategic Engineering. Procedia Computer Science, 200, 1913-1918.
  8. Cournot, A. A. (1838). Researches into the Mathematical Principles of the Theory of Wealth. Translated in 1897 by N.T. Bacon, with a bibliography of Mathematical Economics by Irving Fisher. The Macmillan Company, New York, 1838.
  9. Den Boer, A. V. (2015). Dynamic pricing and learning: historical origins, current research, and new directions. Surveys in operations research and management science, 20(1), 1-18.
  10. Fancello, G., Paddeu, D. & Fadda, P. (2017). Investigating last food mile deliveries: A case study approach to identify needs of food delivery demand. Research in transportation economics, 65, 56-66.
  11. Holý, V., Sokol, O., & Černý, M. (2017). Clustering retail products based on customer behaviour. Applied Soft Computing, 60, 752-762.
  12. Hosken, D., Matsa, D. & Reiffen, D. A. (2000). How do retailers adjust prices?: Evidence from store-level data. Federal Trade Commission.
  13. Horner, S. L., Roos, C. F., von Szeliski, V., Court, A. T., & DuBrul, S. M. (1939) The Dynamics of Automobile Demand. General Motors Corporation, New York.
  14. Kampf, G., Scheithauer, S., Lemmen, S., Saliou, P. & Suchomel, M. (2020). COVID-19-associated shortage of alcohol-based hand rubs, face masks, medical gloves, and gowns: proposal for a risk 
    adapted approach to ensure patient and healthcare worker safety. Journal of Hospital Infection, 105(3), 424-427. 
  15. Kephart, J. O., Hanson, J. E. & Greenwald, A. R. (2000). Dynamic pricing by software agents. Computer Networks, 32(6), 731-752.
  16. Klenow, P. J. & Malin, B. A. (2010). Microeconomic evidence on price-setting. In Handbook of monetary economics (Vol. 3, pp. 231-284). Elsevier.
  17. Larson, R. B. (2007). Pricing Principles from Psychology for Agricultural Organizations with Market Power. Presented at American Agricultural Economics Association Annual Meeting, Portland, OR, July 29-August 1, 2007.