Environmental impact analysis of HPP and PCT
decontamination technologies: an LCA comparison

  • Arianna Paini ,
  • Roberta Stefanini, 
  • Giuseppe Vignali
  • CIPACK Centre, University of Parma, Parco Area delle Scienze, Parma,43124, Italy
  • Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, Parma, 43124, Italy
Cite as
Paini A., , Stefanini R., and Vignali G., (2022).,Environmental impact analysis of HPP and PCT decontamination technologies: an LCA comparison. Proceedings of the 8th International Food Operations and Processing Simulation Workshop (FoodOPS 2022). , 006 . DOI: https://doi.org/10.46354/i3m.2022.foodops.006
 Download PDF

Abstract

High Pressure Processing (HPP) and Pressure Change Technology (PCT) are two non-conventional food stabilization technologies that guarantee high quality products with longer shelf lives. This study analyses whether these two technologies are also able to give benefits in terms of environmental impact. A Life Cycle Assessment (LCA) is applied to the case of pineapple juice packaged in two different types of plastic bottles. The packaging material is a parameter that can influence the properties of the food product, its shelf life and the environmental impact. The results confirm that both technologies have a reduced environmental impact, especially when the most sustainable packaging material is used. Therefore, HPP and PCT are proved to be sustainable solutions in the production of high-quality food, with PCT better than HPP in this preliminary study in all the considered LCA impact categories. Moreover, they can play an important role in the reduction of food waste.

References

  1. Aschoff, J., Knoblauch, K., Huttner, C., Vàsquez-Caicedo, A., Carle, R., & Schweiggert, R. (2016).Non-Thermal Pasteurization of Orange (Citrussinensis (L.) Osbeck) Juices Using ContinuousPressure Change Technology (PCT): a Proof-of-Concept.Food and Bioprocess Technology, 9,1681–1691.doi:https://doi.org/10.1007/s11947-016-1754-6.
  2. Cacace, F., Bottani, E., Rizzi, A., & Vignali, G. (2020,March). Evaluation of the economic andenvironmental sustainability of high pressureprocessing of foods.Innovative Food Science &Emerging Technologies, 60(102281).doi:10.1016/j.ifset.2019.102281
  3. Cheng, J., Wang, Q., & Yu, J. (2022). Life cycle assessment of concentrated apple juiceproduction in China: Mitigation options toreduce the environmental burden.SustainableProduction and Consumption, 32, 15 26.doi:https://doi.org/10.1016/j.spc.2022.04.006
  4. Corepla. (2020). Retrieved July 2022, fromhttps://www.corepla.it/sites/default/files/documenti/rapportodisostenibilita2020_2.pdf
  5. Elamin, W., Endan, J., Yosuf, Y., Shamsudin, R., &Akhmedov, A. (2015). High Pressure ProcessingTechnology and EquipmentEvolution: AReview.Journal of Engineering Science andTechnology Review, 8(5), 75-83.doi:10.25103/jestr.085.11
  6. EPD. (2022).Environmental Performance Indicators.Retrieved fromhttps://www.environdec.com/resources/indicators
  7. European Commission. (2021).European Platform onLife Cycle Assessment (LCA). Retrieved 2021,fromhttps://ec.europa.eu/environment/ipp/lca.htm
  8. Farkas, D., & Hoover, D. (2000). High PressureProcessing.Journal of Food Science, 65, 47-64. doi:https://doi.org/10.1111/j.1750-3841.2000.tb00618.x
  9. Gómez-López, V., Pataro, G., Tiwari, B., Gozzi, M.,Meireles, M., Wang, S., . . . Morata, A. (2021,March 25). Guidelines on reporting treatmentconditions for emerging technologies in foodprocessing.Critical Reviews in Food Science andNutrition. doi:10.1080/10408398.2021.1895058
  10. ISO 14040. (2006).ISO 14040:2006 Environmentalmanagement—Life cycle assessment—Principles and framework.Retrieved April 2022,from ISO International Standard Organization:https://www.iso.org/standard/37456.html
  11. ISO 14044. (2006).ISO 14044:2006 Environmentalmanagement—Life cycle assessment—Requirements and guidelines.Retrieved April2022, from ISO-International Organizationfor Standardization:https://www.iso.org/standard/38498.html
  12. ISPRA. (2021). Retrieved July 2022, fromhttps://www.isprambiente.gov.it/files2022/pubblicazioni/rapporti/rapportorifiutiurbani_ed-2021-n-355-conappendice_agg18_01_2022.pdf
  13. Jambrak, A., Nutrizio, M., Djekić, I., Pleslić, S., &Chemat, F. (2021). Internet of nonthermal foodprocessing technologies (Iontp): Food industry4.0 and sustainability.Applied Sciences(Switzerland), 11(686), 1-20.doi:10.3390/app11020686
  14. Nabi, B., Mukhtar, K., Arshad, R., Radicetti, E., T. P.,Walayat, N., . . . Aadil, R. (2021). High-pressureprocessing for sustainable food supply.Sustainability (Switzerland), 13(3908).doi:10.3390/su132413908
  15. Pardo, G., & Zufía, J. (2012, June). Life cycle assessmentof food-preservation technologies.Journal ofCleaner Production, 28, 197-207.doi:10.1016/j.jclepro.2011.10.016
  16. Qazalbash, U., Aadil, R., Madni, G., & Bekhit, A. (2018).The Impact of Nonthermal Technologies on theMicrobiological Quality of Juices: A Review. Comprehensive Reviews in Food Science and FoodSafety (17), 437-457.doi:https://doi.org/10.1111/1541-4337.12336
  17. Rastogi, N. (2013).Introduction in Recent Developmentsin High Pressure Processing of Foods.Springer.
  18. Stefanini, R., Borghesi, G., Ronzano, A., & Vignali, G.(2021, April).Plastic or glass: a newenvironmental assessment with a marine litterindicator for the comparison of pasteurizedmilk bottles.The International Journal of LifeCycle Assessment , 26(1). doi:10.1007/s11367-020-01804-x
  19. Vignali, G., Gozzi, M., Pelacci, M., & Stefanini, R. (2022).Non-conventional Stabilization for Fruit andVegetable Juices: Overview, TechnologicalConstraints, and Energy Cost Comparison.Food and Bioprocess Technology.doi:https://doi.org/10.1007/s11947-022-02772-w
  20. Vollmer, K., Santarelli, S., Vásquez-Caicedo, A.,Iglesias, S., Frank, J., Carle, R., & Steingass, C.(2020, August 21). Non-thermal Processing ofPineapple (Ananas comosus [L.] Merr.) JuiceUsing Continuous Pressure ChangeTechnology (PCT): Effects on Physical Traits,Microbial Loads, Enzyme Activities, andPhytochemical Composition.Food andBioprocess Technology, 1833–1847.doi:10.1007/s11947-020-02520-y