Food waste valorisation and techno-economic analyses through simulation’s software: a literature review

  • Giovanni Paolo Carlo Tancredi ,
  • Roberta Stefanini, 
  • Giuseppe Vignali
  • a,b,c  Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124, Parma, Italy
Cite as
Tancredi G.P.C., Stefanini R., and Vignali G., (2022).,Food waste valorisation and techno-economic analyses through simulation’s software: a literature review. Proceedings of the 8th International Food Operations and Processing Simulation Workshop (FoodOPS 2022). , 007 . DOI: https://doi.org/10.46354/i3m.2022.foodops.007
 Download PDF

Abstract

The valorisation of food waste and losses is pursued to cope with the increasing amount of wastages produced along the whole food supply chain, in order to achieve value added products such as animal feed, molecules and compounds for the cosmetic and pharmaceutical sectors, bio-fuels and energy. Due to the variety of different losses, wastes and processes to obtain value added products, an important engineering activity is required to convert laboratories results to real plants for industrial production.
Process flow simulation software, such as SuperPro Designer®, are then currently used to pursue techno-economic-analyses and feasibility studies of these kind of industrial bioprocesses. Modelling and optimization of process conditions will allow systems scale-up thus leading to a maximization of the production. Therefore, an analysis of the current applications of these types of software, will allow the reader to understand how to model these processes and evaluate which will be those already designed at an industrial level or that still remain nowadays at a lab scale. With the aim of understanding the state of the art of the software implementation, a literature review has been carried out. This work deals with then a survey about technologies for food waste valorisation into energy or value-added products, including biofertilizers, biofuels, bioplastics, and chemicals, with also a focus on biological and thermal treatments.

References

  1. Achinas, S., Leenders, N., Krooneman, J., & Euverink, G.(2019). Feasibility assessment of a bioethanol plantin the Northern Netherlands.Applied Sciences(Switzerland), 9(21), 4586. doi:10.3390/app9214586
  2. Amjith, L., & Bavanish, B. (2022). A review on biomassand wind as renewable energy for sustainableenvironment.Chemosphere, 293, 133579.doi:https://doi.org/10.1016/j.chemosphere.2022.133579
  3. Awasthi, M., Sarsaiya, S., Wainaina, S., Rajendran, K.,Awasthi, S., Liu, T., . . . Taherzadeh, M. J. (2021).Techno-economics and life-cycle assessment ofbiological and thermochemical treatment of bio-waste.Renewable and Sustainable Energy Reviews,144(1364-0321), 110837.doi:https://doi.org/10.1016/j.rser.2021.110837
  4. Caldeira, C., Vlysidis, A., Fiore, G., De Laurentiis, V.,Vignali, G., & Sala, S. (2020). Sustainability of foodwaste biorefinery: A review on valorisationpathways, techno-economic constraints, andenvironmental assessment.Bioresource Technology,312, 123575.doi:https://doi.org/10.1016/j.biortech.2020.123575.
  5. Canizales, L., Rojas, F., Pizarro, C., Caicedo-Ortega, N.,& Villegas-Torres, M. (2020). SuperPro Designer®,user-oriented software used for analyzing thetechno-economic feasibility of electrical energygeneration from sugarcane vinasse in Colombia.Processes, 8(9), 1180. doi:10.3390/PR8091180
  6. Cheong, W., Chan, Y. J., Tiong, T., Chong, W. C.,Kiatkittipong, W., Kiatkittipong, K., . . . Lim, J. W.(2022). Anaerobic Co-Digestion of Food Waste withSewage Sludge: Simulation and Optimization forMaximum Biogas Production.Water, 14(7), 1075.doi:10.3390/w14071075
  7. Chien, F., Hsu, C.-C., Ozturk, I., Sharif, A., & Sadiq, M.(2022). The role of renewable energy andurbanization towards greenhouse gas emission intop Asian countries: Evidence from advance panelestimations.Renewable Energy, 186(0960-1481),207-216.doi:https://doi.org/10.1016/j.renene.2021.12.118
  8. Cui, L., Weng, S., Majeed, N., Zahid, R., & Shahzad, U.(2022). Exploring the role of renewable energy,urbanization and structural change forenvironmental sustainability: Comparative analysisfor practical implications.Renewable Energy, 184,215-224.doi:https://doi.org/10.1016/j.renene.2021.11.075.
  9. Demichelis, F., Fiore, S., Pleissner, D., & Venus, J.(2018). Technical and economic assessment of foodwaste valorization through a biorefinery chain.Renewable and Sustainable Energy Reviews, 94, 38-48. doi:10.1016/j.rser.2018.05.064
  10. Fernando-Foncillas, C., & Varrone, C. (2021). Potentialof the sewage sludge valorization in Scandinavia byco-digestion with other organic wastes: A techno-economic assessment.Journal of Cleaner Production,324(0959-6526), 129239.doi:https://doi.org/10.1016/j.jclepro.2021.129239.
  11. Fredsgaard, M., Hulkko, L., Chaturvedi, T., & Thomsen,M. (2021). Techno-economic analysis of a two-stepfermentation process for bio-butanol productionfrom cooked rice.Process simulation and techno-economic assessment of Salicornia sp. based jet fuelrefinery through Hermetia illucens sugars-to-lipidsconversion and HEFA route, 150, 106142.doi:10.1016/j.biombioe.2021.106142
  12. Geissler, C. H., & Maravelias, C. T. (2022). Analysis ofalternative bioenergy with carbon capturestrategies.Energy & Environmental Science.
  13. Gómez, J., Berni, P., Matallana, L., Sánchez, Ó.,Teixeira, J., & Nobre, C. (2022). Towards a biorefinery processing waste fromplantain agro–Industry: process development for the productionof an isomalto–oligosaccharide syrup from rejectedunripe plantain fruits.Food and BioproductsProcessing, 133, 100-118.doi:10.1016/j.fbp.2022.03.005
  14. Gómez, J., Nobre, C., Teixeira, J., & Sánchez, Ó. (2022).Towards a biorefinery processing waste fromplantain agro-industry: Assessment of theproduction of dairy cattle feed through processsimulation.Biosystems Engineering, 131-149.doi:10.1016/j.biosystemseng.2022.03.008
  15. Hemalatha, M., Sarkar, O., & Venkata Mohan, S. (2019).Self-sustainable azolla-biorefinery platform forvalorization of biobased products with circular-cascading design.Chemical Engineering Journal, 373,1042-1053. doi:10.1016/j.cej.2019.04.013
  16. Kharola, ,., Ram, M., Mangla,S. K., Goyal, N., Nautiyal,O., Pant, D., & Kazancoglu, Y. (2022). Exploring thegreen waste management problem in food supplychains: A circular economy context.Journal ofCleaner Production, 351(131355), 131355.doi:https://doi.org/10.1016/j.jclepro.2022.131355
  17. Ladero, M., Esteban, J., Bolívar, J., Manuel, Santos, V. E.,Martín-Domínguez, V., . . . Lens, P. L. (2022). FoodWaste Biorefinery for Bioenergy and Value AddedProducts. InRenewable Energy Technologies forEnergy Efficient Sustainable Development(pp. 185-224). Springer. doi:10.1007/978-3-030-87633-3_8
  18. Li, X., Mupondwa, E., & Tabil, L. (2018).Technoeconomic analysis of biojet fuel productionfrom camelina at commercial scale: Case ofCanadian Prairies.Bioresource Technology, 249, 196-205. doi:10.1016/j.biortech.2017.09.183
  19. Mabrouki, J., Abbassi, M., Khiari, B., Jellali, S., Zorpas,A., & Jeguirim, M. (2022). The dairy biorefinery:Integrating treatment process for Tunisian cheesewhey valorization.Chemosphere, 293, 133567.doi:10.1016/j.chemosphere.2022.133567
  20. Mahmod, S., Jahim, J., Abdul, P., Luthfi, A., & Takriff, M.(2021). Techno-economic analysis of two-stageanaerobic system for biohydrogen and biomethaneproduction from palm oil mill effluent.Journal ofEnvironmental Chemical Engineering, 9(4), 105679.doi:10.1016/j.jece.2021.105679
  21. Nyairo, R., Hasegawa, T., Fujimori, S., Wu, W., &Takahashi, K. (2022). Socio-economic trajectories,urban area expansion and ecosystem conservationaffect global potential supply of bioenergy.Biomassand Bioenergy, 159, 106426.doi:https://doi.org/10.1016/j.biombioe.2022.106426
  22. Ozturk, A., Arasoglu, T., Gulen, J., Cheng, S., Al-Shorgani, N., Habaki, H., . . . Cross, J. (2021).Techno-economic analysis of a two-stepfermentation process for bio-butanol productionfrom cooked rice.Sustainable Energy and Fuels, 5(14),3705-3718. doi:10.1039/d1se00496d
  23. Pang, Y., Yan, Y., Foo, D., Sharmin, N., Zhao, H., Lester,E., . . . Pang, C. (2021). The influence of lignocelluloseon biomass pyrolysis product distribution and economics via steady state process simulation.Journal of Analytical and Applied Pyrolysis, 158,104968. doi:10.1016/j.jaap.2020.104968
  24. Schernikau, L., & Smith, W. (2022). Climate impacts offossil fuels in todays electricity systems.{Journal ofthe Southern African Institute of Mining andMetallurgy, 122, 133-145. doi:10.17159/2411-9717/1874/2022
  25. Shafinas, M. N., & Rosentrater, K. (2020). Techno-economic evaluation of food waste fermentation forvalue-added products.Energies, 13(2), 436.doi:10.3390/en13020436
  26. Tiong, J., Chan, Y., Lim, J., Mohamad, M., Ho, C.-D., UrRahmah, A., . . . Kumakiri, I. (2021). Simulation and optimization of anaerobic co-digestion of foodwaste with palm oil mill effluent for biogasproduction.Sustainability (Switzerland),13, 13665.doi:10.3390/su132413665
  27. Vučurović, D., Bajić, B., Vučurović, V., Jevtić-Mučibabić, R., & Dodić, S. (2022). Bioethanol Production from Spent Sugar Beet Pulp—ProcessModeling and Cost Analysis. Fermentation, 8(3), 114. doi:10.3390/fermentation8030114
  28. Xu, F., Okopi, S., Jiang, Y., Chen, Z., Meng, L., Li, Y., . . .Li, C. (2022). Multi-criteria assessment of foodwaste and waste paper anaerobic co-digestion:Effects of inoculation ratio, total solids content, andfeedstock composition.Renewable Energy,194(0960-1481), 40-50.doi:https://doi.org/10.1016/j.renene.2022.05.078.
  29. Yadav, V. S., Singh, A., Gunasekaran, A., Raut, R. D., &Narkhede, B. E. (2022). A systematic literaturereview of the agro-food supply chain: Challenges,network design, and performance measurementperspectives.Sustainable Production andConsumption, 28(2352-5509), 685-704.doi:https://doi.org/10.1016/j.spc.2021.11.019.
  30. Zhao, X.-g., Jiang, G.-w., Li, A., & Wang, L. (2016).Economic analysis of waste-to-energy industry inChina.Waste Management, 48(0956-053X), 604-618.doi:https://doi.org/10.1016/j.wasman.2015.10.014