Simulation and parametric sensitivity evaluation for
ohmic heating of chicken breast

  • Sebahattin Serhat Turgut ,
  • Efthymios Siamos, 
  • Aberham Hailu Feyissa
  • a,b,c  National Food Institute, Technical University of Denmark, Søltofts Plads, 227, Kgs. Lyngby, 2800, Denmark
  • Department of Food Engineering, Suleyman Demirel University, Cunur, Isparta, 32260, Turkiye
Cite as
Turgut S.S., Siamos E., and Feyissa A.H. (2022).,Simulation and parametric sensitivity evaluation for ohmic heating of chicken breast. Proceedings of the 8th International Food Operations and Processing Simulation Workshop (FoodOPS 2022). , 009 . DOI: https://doi.org/10.46354/i3m.2022.foodops.009
 Download PDF

Abstract

The objective of the present study is to assess the global sensitivity (using Response Surface Methodology) of chicken meat and cooking medium temperatures during ohmic heating against uncertainties in chicken meat properties (specific heat capacity, thermal conductivity, and electrical conductivity), the concentration of the salt solution, applied voltage, and surrounding air temperature, as well as the heat transfer coefficient to the air. To achieve this, a mechanistic model for ohmic heating of chicken meat in salt solution was developed by coupling heat transfer, laminar fluid flow, and electric field. The numerical solution was carried out using COMSOL Multiphysics® v5.6. The developed model’s accuracy was validated by comparing the experimental
data obtained at two different voltages (120 and 180V) and salt concentrations (0.2 and 0.4%) of the heating solution. The model predictions were in good agreement with experimental data. According to the results, special care should be given during ohmic eating of meat samples to avoid under-processing that may occur on sample surfaces. From the sensitivity analysis, chicken electrical conductivity, applied voltage, and brine concentration are the main factors affecting the chicken core and surface temperatures, as well as heating rate. On the other hand, properties related to the surrounding air (overall heat transfer coefficient and temperature) had no significant impact on neither chicken temperature nor its heating rate.

References

  1. Akkara, M., & Kayaardı, S. (2014).Effect of advancedpreservation techniques on meat quality.AkademikGıda,12(4), 79–85.
  2. Albuquerque, C. D. de, Curet, S., & Boillereaux, L.(2019).A 3D-CFD-heat-transfer-based model forthe microbial inactivation of pasteurized foodproducts.Innovative Food Science & EmergingTechnologies,54, 172–181.
  3. Alters, R. E., & May, K. N. (1963). Thermal conductivityand density of chicken breast muscle and skin.Food Technology,17, 808–811.
  4. Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (2000).Transport phenomena(2nd ed.). John Wiley & Sons,Inc.
  5. Borgonovo,E., & Plischke, E. (2016). Sensitivityanalysis: A review of recent advances.EuropeanJournal of Operational Research,248(3), 869–887.
  6. Choi, W., Kim, S. S., Park, S. H., Ahn, J. B., & Kang, D. H.(2020). Numerical analysis of rectangular typebatch ohmic heater to identify the cold point.FoodScience & Nutrition,8(1), 648–658.
  7. de Alwis, A. A. P., & Fryer, P. J. (1990).A finite-elementanalysis of heat generation and transfer duringohmic heating of food.Chemical EngineeringScience,45(6), 1547–1559.
  8. de Jong, A. E. I., van Asselt, E. D., Zwietering, M. H., Nauta, M. J., & de Jonge, R. (2012).Extreme heatresistance of food borne pathogens campylobacterjejuni, escherichia coli, and salmonellatyphimurium on chicken breast fillet duringcooking.International Journal of Microbiology.
  9. de Verdier, M. G., Hagman, U., Peters, R. K., Steineck,G., & Övervik, E. (1991).Meat, cooking methodsand colorectal cancer: A case-referent study inStockholm.International Journal of Cancer,49(4),520–525.
  10. Dominguez-Hernandez, E., Salaseviciene, A., &Ertbjerg, P. (2018). Low-temperature long-timecooking of meat: Eating quality and underlyingmechanisms.Meat Science,143, 104–113.
  11. Engchuan, W., Jittanit, W., & Garnjanagoonchorn, W.(2014). The ohmic heating of meat ball: Modelingand quality determination.Innovative Food Science& Emerging Technologies,23, 121–130.
  12. Ferreira, V. C. S., Morcuende, D., Madruga, M. S.,Hernández-López, S. H., Silva, F. A. P., Ventanas,S., & Estévez, M. (2016). Effect of pre-cookingmethods on the chemical and sensorydeterioration of ready-to-eat chicken pattiesduring chilled storage and microwave reheating.Journal of Food Science and Technology,53(6),2760–2769.
  13. Geankoplis, C. J. (2003).Transport processes andseparation process principles. Prentice HallProfessional Technical Reference.
  14. Goullieux, A., & Pain, J.-P. (2014). Ohmic heating.Emerging Technologies for Food Processing, 399–426.
  15. Guo, W., Llave, Y., Jin, Y., Fukuoka, M., & Sakai, N.(2017).Mathematical modeling of ohmic heatingof two-component foods with non-uniformelectric properties at high frequencies.InnovativeFood Science & Emerging Technologies,39, 63–78.
  16. Hamby, D. M.(1994). A review of techniques for parameter sensitivity analysis of environmental models. Environmental Monitoring and Assessment,32(2), 135–154.
  17. Jiang, X., Li, L., Shen, W., & Zhou, J. (2010). Numerical simulation of inhomogeneous food with ohmicheating. International Journal of Food Engineering,6(4).
  18. Jun, S., & Sastry, S. (2005). Modeling and optimizationof ohmic heating of foods inside a flexible package.Journal of Food Process Engineering,28(4), 417–436.
  19. Kanjanapongkul, K. (2017). Rice cookingusing ohmicheating: Determination of electrical conductivity,water diffusion and cooking energy.Journal of FoodEngineering,192, 1–10.
  20. Khodeir, M., Rouaud, O., Ogé, A., Jury, V., Le-Bail, P., &Le-Bail, A. (2021). Study of continuous cake pre-bakingin a rectangular channel using ohmicheating.Innovative Food Science & EmergingTechnologies,67, 102580.
  21. Kim, S. S., Choi, W., Park, S. H., & Kang, D. H. (2020). Mathematical modeling of ohmic heating forinactivation of acid-adapted foodborne pathogensin tomato juice.International Journal of FoodEngineering,16(4).
  22. Kumar, A., & Dilber, I. (2006). Fluid flow and itsmodeling using computational fluid dynamics.InS. S. Sablani, M. S. Rahman, A. K. Datta, & A. S.Mujumdar (Eds.),Handbook of Food and BioprocessModeling Techniques(pp. 41–83). CRC Press.
  23. Marra, F., Zell, M., Lyng, J. G., Morgan, D. J., & Cronin,D. A. (2009). Analysis of heat transfer during ohmicprocessing of a solid food.Journal of FoodEngineering,91(1), 56–63.
  24. McKetta, J. J. (1995).Encyclopedia of chemical processingand design (vol. 52). CRC Press. Mottram, D. S. (1998). Flavour formation in meat andmeat products: A review.Food Chemistry,62(4),415–424.
  25. Naveena, B. M., Muthukumar, M., Muthulakshmi, L.,Anjaneyulu, A. S. R., & Kondaiah, N. (2014). Effectof different cooking methods on lipid oxidationand microbial quality of vacuum-packagedemulsion products from chicken.Journal ofFoodProcessing and Preservation,38(1), 39–47.
  26. Patel, A., Singh, M., & de Pilli, T. (2018). Ohmic Heatingfor Food Products-A Review.Current Journal ofApplied Science and Technology,27(3), 1–7.
  27. Pedersen, S. J., Feyissa, A. H., Brøkner Kavli, S. T.,&Frosch, S. (2016).An investigation on theapplication of ohmic heating of cold water shrimpand brine mixtures.Journal of Food Engineering,179, 28–35.
  28. Ramaswamy, H. S., Marcotte, M., Sastry, S., &Abdelrahim, K. (2014).Ohmic heating in foodprocessing.CRC Press.
  29. Rouger, A., Tresse, O., & Zagorec, M. (2017). Bacterialcontaminants of poultry meat: Sources, species,and dynamics.Microorganisms,5(3), 50.
  30. Sakr, M., & Liu, S. (2014). A comprehensive review onapplications of ohmic heating (OH).Renewable andSustainable Energy Reviews,39, 262–269.
  31. Salengke, S., & Sastry, S. K. (2007). Models for ohmicheating of solid–liquid mixtures under worst-caseheating scenarios.Journal of Food Engineering,83(3), 337–355.
  32. Saltelli, A. (2002). Sensitivity analysis for importanceassessment.Risk Analysis,22(3), 579–590.
  33. Sarang, S., Sastry, S. K., Gaines, J., Yang, T. C. S., &Dunne, P. (2007). Product formulation for ohmicheating: Blanching as a pretreatment method toimprove uniformity in heating of solid–liquid foodmixtures.Journal of Food Science,72(5), E227–E234.
  34. Sarang, S., Sastry, S. K., & Knipe, L. (2008). Electricalconductivity of fruits and meats during ohmicheating.Journal of Food Engineering,87(3), 351–356.
  35. Shim, J. Y., Lee, S. H., & Jun, S. (2010). Modeling of ohmic heating patterns of multiphase foodproducts using computational fluid dynamicscodes. Journal of Food Engineering,99(2), 136–141.
  36. Shin, M., Kim, S. S., & Kang, D. H. (2020). Applicationof ohmic heating for the inactivation ofmicrobiological hazards in food products. Journalof Food Safety,40(6), e12787.
  37. Siegel, A. F., Wagner, M. R., & Siegel, A. F. (2022). Practical business statistics.
  38. Silva, F. A. P., Ferreira, V. C. S., Madruga, M. S., &Estévez, M. (2016). Effect of the cooking method(grilling, roasting, frying and sous-vide) on the oxidation of thiols, tryptophan, alkaline amino acids and protein cross-linking in jerky chicken. Journal of Food Science and Technology,53(8), 3137–3146.
  39. Silva, F. V. M., & Gibbs, P. A. (2012). Thermal pasteurization requirements for the inactivation of Salmonella in foods. Food Research International,45(2), 695–699.
  40. Singh, R. P., & Heldman, D. R. (2014).Introduction toFood Engineering: Fifth Edition. 1–861.
  41. Song, J. H., Kim, M. J., Kim, Y. J., & Lee, J. H. (2017).Monitoring changes in acid value, total polarmaterial, and antioxidant capacity of oils used forfrying chicken.Food Chemistry,220, 306–312.
  42. Tulsiyan, P., Sarang, S., & Sastry, S. K. (2008).Electrical conductivity of multicomponentsystems during ohmic heating.InternationalJournal of Food Properties,11(1), 233–241.
  43. Turgut, S. S., Küçüköner, E., Feyissa, A. H., &Karacabey, E. (2021). A novel drying system–simultaneous use of ohmic heating withconvectional air drying: System design anddetailed examination using CFD.Innovative FoodScience & Emerging Technologies,72, 102727.
  44. Varghese, K. S., Pandey, M. C., Radhakrishna, K., &Bawa, A. S. (2014). Technology, applications andmodelling of ohmic heating: A review.Journal ofFood Science and Technology,51(10), 2304–2317.
  45. Yao, M., Ali Khan, I., Cheng, Y., Ang, Y., Zhou, X., &Huang, M. (2020). Effects ofcookingmethods andteamarinades ontheformation of heterocyclicamines and benzo[a]pyrene in grilled drumsticks.Journal of Food Protection,83(2), 365–376.
  46. Zell, M., Cronin, D. A., Morgan, D. J., Marra, F., & Lyng,J. G. (2008). Solid food pasteurization by ohmicheating: Influence of process parameters.COMSOLConference.
  47. Zell, M., Lyng, J. G., Cronin, D. A., & Morgan, D. J.(2010). Ohmic cooking of whole beef muscle—Evaluation of the impact of a novel rapid ohmiccooking method on product quality.Meat Science,86(2), 258–263.