Design and optimization through simulation of an industrial system for the continuous UV-C treatment of fruits and vegetables

  • Andrea Volpi,
  • Federico Solari, 
  • Natalya Lysova 
  • Michele Bocelli
  • a,b,c,d  University of Parma - Department of Engineering and Architecture, Viale delle Scienze 181/A, Parma, 43124, Italy
Cite as
Volpi A., Solari F., Lysova N., and Bocelli M. (2022).,Design and optimization through simulation of an industrial system for the continuous UV-C treatment of fruits and vegetables. Proceedings of the 8th International Food Operations and Processing Simulation Workshop (FoodOPS 2022). , 011 . DOI: https://doi.org/10.46354/i3m.2022.foodops.011
 Download PDF

Abstract

Food loss and food waste are critical issues worldwide, and they have been largely addressed by institutions in recent years. Horticultural products are particularly prone to experience decay and loss of quality, so they often happen to be disposed of without being consumed. The treatment of food products with Ultraviolet (UV) light in the UV-C region, can contribute to extending the product shelf-life by decreasing the surface microbial and fungal contamination, and by activating stress-induced defense mechanisms (hormesis). Despite being effective, energy-efficient and non-toxic, the irradiation of fruits and vegetables is not widespread in the food industry, mainly due to technical and legislative limitations.
In this paper we use a simulation approach to define technical guidelines for the design and the optimization of a machine for the continuous treatment of fruits and vegetables with UV-C rays, aiming to improve the uniformity of the radiation dose imparted to the products and decrease the processing time. The goal of our study, therefore, is three-fold: (i) to contribute to the state-of the-art of UV-C treatment of horticultural products; to define technical guidelines that would (ii) optimize both the device and the process, and (iii) make the UV-C treatment effectively implementable by industrial stakeholders.

References

  1. Boschert, S., & Rosen, R. (2016).Digital twin-thesimulation aspect. Mechatronic futures: Challengesand solutions for mechatronic systems and theirdesigners (pp. 59-74) doi:10.1007/978-3-319-32156-1_5
  2. Buhler, S., Solari, F., Gasparini, A., Montanari, R.,Sforza, S., Tedeschi, T. (2019)UV irradiation as acomparable method to thermal treatment forproducing high quality stabilized milk whey, LWT-Food Science and Technology 105 (2019) 127–134.https://doi.org/10.1016/j.lwt.2019.01.051
  3. Chryssolouris, G., Mavrikios, D., Papakostas, N.,Mourtzis, D., Michalos, G., & Georgoulias, K. (2009).Digital manufacturing: History, perspectives, andoutlook. Proceedings of the Institution ofMechanical Engineers, Part B: Journal ofEngineering Manufacture, 223(5), 451-462.doi:10.1243/09544054JEM1241
  4. Commission Implementing Regulation (EU)2017/2470, 2017. Commission ImplementingRegulation (EU) 2017/2470 of 20 December 2017establishing the Union list of novel foods inaccordance with Regulation (EU) 2015/2283 of theEuropean Parliament and of the Council on novelfoods. Official Journal of the European Union, 351,72–2001.
  5. Darré, M., Vicente, A. R., Cisneros-Zevallos, L., & Artés-Hernández, F. (2022). Postharvest UltravioletRadiation in Fruit and Vegetables: Applications andFactors Modulating Its Efficacy on BioactiveCompounds and Microbial Growth. Foods, 11(5),653. doi:10.3390/foods11050653
  6. Duarte-Sierra, A., Tiznado-Hernández, M. E., Jha, D.K., Janmeja, N., & Arul, J. (2020). Abiotic stresshormesis: An approach to maintain quality, extendstorability, and enhance phytochemicals on freshproduce during postharvest. ComprehensiveReviews in Food Science and Food Safety, 19(6),3659-3682. doi:10.1111/1541-4337.12628
  7. Food and Agriculture Organization (2019). The State ofFood and Agriculture 2019. Moving forward on foodloss and waste reduction. Rome.
  8. Gadelha, J. R., Allende, A., López-Gálvez, F., Fernández,P., Gil, M. I., Egea, J. A.(2019).Chemical risksassociated with ready-to-eat vegetables:Quantitative analysis to estimate formation and/oraccumulation of disinfection byproducts duringwashing. EFSA Journal, 17(S2)doi:10.2903/j.efsa.2019.e170913
  9. Guerrero-Beltrán, J. A., & Barbosa-Cánovas, G. V. (2004).Review: Advantages and limitations on processing foods by UV light. Food Science andTechnology International, 10(3), 137-147.doi:10.1177/1082013204044359
  10. Kingwascharapong, P., Iida, Y., Tanaka, F., & Tanaka, F.(2020). Simulation of a UV–C Conveyor SystemUsing Computational Fluid Dynamics Techniqueson the Uniformity of the Incident UV–C DoseDistribution to Strawberry. Journal of the Faculty ofAgriculture, Kyushu University, 65(2), 371–378.doi:10.5109/4103903
  11. Kowalski, W. (2009). Ultraviolet germicidal irradiationhandbook: UVGI for air and surface disinfection.Appendixes A, B, C. doi:10.1007/978-3-642-01999-9
  12. Malekjani, N., & Jafari, S. M. (2018).Simulation of fooddrying processes by Computational Fluid Dynamics(CFD); recent advances and approaches. Trends inFood Science & Technology, 78, 206–223.doi:10.1016/j.tifs.2018.06.006
  13. Nguyen,T. T., Johnson, G. R., Bell, S. C., & Knibbs, L. D.(2022). A systematic literature review of indoor airdisinfection techniques for airborne bacterialrespiratory pathogens. International Journal ofEnvironmental Research and Public Health, 19(3)doi:10.3390/ijerph19031197
  14. Olaimat, A. N., & Holley, R. A. (2012). Factorsinfluencing the microbial safety of fresh produce: Areview. Food Microbiology, 32(1), 1-19.doi:10.1016/j.fm.2012.04.016
  15. Oyinloye, T. M., & Yoon, W. B. (2021). Application ofComputational Fluid Dynamics (CFD) Simulationfor the Effective Design of Food 3D Printing (AReview). Processes, 9(11), 1867.doi:10.3390/pr9111867
  16. Pandiselvam, R., Barut Gök, S., Yüksel, A. N., Tekgül, Y.,Çalişkan Koç, G., & Kothakota, A. (2022). Evaluationof theimpact of UV radiation on rheological andtextural properties of food. Journal of TextureStudies, doi:10.1111/jtxs.12670
  17. Park, H., & Yoon, W. (2018). Computational FluidDynamics (CFD) Modelling and Application forSterilization of Foods: A Review. Processes, 6(6), 62.doi:10.3390/pr6060062
  18. Sethi, S., Joshi, A., & Arora, B. (2018).UV Treatment ofFresh Fruits and Vegetables. PostharvestDisinfection of Fruits and Vegetables, 137–157.doi:10.1016/b978-0-12-812698-1.00007-8
  19. Shama, G. (2007). Process challenges in applying lowdoses of ultraviolet light to fresh produce foreliciting beneficial hormetic responses. PostharvestBiology and Technology, 44(1), 1-8.doi:10.1016/j.postharvbio.2006.11.004
  20. Silva, A. B., Lima Filho, N. M., Palha, M. A. P. F., &Sarmento, S. M. (2013).Kinetics of waterdisinfection using UV-C radiation. Fuel, 110, 114-123. doi:10.1016/j.fuel.2012.11.026
  21. Singh, H., Bhardwaj, S. K., Khatri, M., Kim, K.-H., &Bhardwaj, N. (2021). UVC radiation for food safety:An emerging technology for the microbial disinfection of food products. Chemical EngineeringJournal, 417, 128084. doi:10.1016/j.cej.2020.128084
  22. Tanaka, F., Nashiro, K., Trivittayasil, V., & Uchino, T.(2016).Simulation of UV-C Dose Distribution andInactivation of Mold Spore on Strawberries in aConveyor System. Food Science and TechnologyResearch, 22(4), 461–466. doi:10.3136/fstr.22.461
  23. United Nations (2015). Transforming Our World: The2030 Agenda for Sustainable Development. NewYork: UN Publishing.
  24. United States Food and Drug Administration (2000).Ultraviolet Radiation for the Processing andTreatment of Food. Code of Federal Regulations (21CFR 179 Section 179.39). Federal Register 65: 230.
  25. Vignali, G., Gozzi, M., Pelacci, M., & Stefanini, R. (2022).Non-conventional stabilization for fruit andvegetable juices: Overview, technologicalconstraints, and energy cost comparison. Food andBioprocess Technology, 15(8), 1729-1747.doi:10.1007/s11947-022-02772-w
  26. Zaffina, S., Camisa, V., Lembo, M., Vinci, M. R., Tucci,M. G., Borra, M., . . .Cannatã, V. (2012). Accidentalexposure to UV radiation produced by germicidallamp: Case report and risk assessment.Photochemistry and Photobiology, 88(4), 1001-1004. doi:10.1111/j.1751-1097.2012.01151.x