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Abstract 
Intermodal transport plays a crucial role for sustainable transport in Europe. Inefficiencies at the interface of road and terminal 
reduce the acceptance of this transport mode. Increasing the efficiency of the gate-in process is therefore vital. An essential part 
of this process is the damage detection of trailers entering the terminals due to safety and liability issues. It is usually performed 
by trained personnel. Deep learning promises to assist human resources reliably in this step. While automated damage detection 
has been discussed in various fields, including container deliveries, trailers stayed out of the research scope. Thus, this work 
focuses on automatic damage detection of trailers using deep learning. We observe two approaches: transfer and semi-supervised 
learning. While the first one is based on the MobileNetV2 network, the latter uses convolutional autoencoders and might be 
helpful not only for detection but also for damage segmentation and visualization. One of the significant difficulties is the trailer 
detection on images and its partitioning, which is necessary due to the large recording resolution. That is why we also observe a 
pre-processing algorithm for the real-world images received from an intermodal terminal in Austria. 
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1. Introduction 

Inland terminals represent the gateway to shifting 
goods from road to rail or waterways. However, 
especially at the interface of road and terminal, a lack 
of interoperability and integrated solutions is evident, 
both in terms of physical infrastructure and 
information and communication technology. All of  

these make the change of transport mode time-
consuming and cost-intensive. 

Especially the gate-in process involves a great deal 
of time and effort. Here Intermodal Transport Units 
(ITUs) such as trailers and containers must be 
registered, assigned to their waiting positions, and 
checked for damages before entering the terminal 
(Posset et al., 2020).
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Figure 1. Gate-In process at an intermodal terminal

Figure 1 shows the gate-in processes. First, a vehicle 
arrives and drives through the optical character 
recognition (OCR) gate. The OCR gate retrieves data, 
such as the plate number and images of the ITU. The 
terminal's operation system (TOS) then processes the 
data. The ITU is checked for damages by qualified staff 
(checkers) in the following. During the check, the 
driver performs self-registration. The check is a 
particularly delicate process for the terminal due to 
possible safety and liability issues in case of insufficient 
documentation. If damage is detected, this is 
documented. The driver gets informed, and repair 
decisions are made depending on the extent of the 
damage.   

Inefficiencies in the gate-in process can lead to 
longer waiting times for carriers and higher costs for 
terminal operators, thus, inhibiting the increase in the 
share of combined freight transport. Compared with 
2009, the number of goods in tons transported with the 
intermodal rail freight in Europe grew by 49.9%, while 
the share of trailers among other transportation units 
in the European Combined Transport was 21% in 2018 
(Posset et al., 2020). Inland terminals may differentiate 
themselves from others by offering value added 
services (VAS) (Protic et al., 2020). As the 
implementation of new VAS has risks, possible new VAS 
such as improved damage detection need to be 
analyzed thoroughly. Improving the gate-in process 
might lead to reduced waiting times and an even higher 
acceptance of intermodal transport. 

That is why, we focus on the automated damage 
detection of trailers in this ongoing research. 
Automatic recognition aims to accelerate the process 
and relieve the checkers, who could also be assigned to 
other tasks. As shown in Section 2, containers' 
automated damage detection (ADD) was first discussed 
almost 30 years ago. However, while there has been an 
increasing number of publications in the last years on 
this topic, trailers were not part of the research until 
now. 

For this reason, we develop an algorithm for the ADD 
of trailers using two deep learning approaches: transfer 
and semi-supervised. The first one allows to perform 
classification with a high detection rate. The second 
approach uses convolutional autoencoders and might 
be useful not only for damage detection but also for 
damage visualization. Such a method may also be 
helpful in similar studies if the dataset is unbalanced, 
with most images representing negative (non-
damaged) cases. 

After introducing the state of the art in Section 2, the 
data, processing steps, and structure of the ADD 
algorithms are presented in Section 3. In Section 4, we 
provide the results of the ADD algorithms after the 
training. Then we present conclusions and future work 
in Section 5. 
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2. State of the art 

Over 25 years ago, Nakazawa et al. (1995) discussed the 
need for an automatic detection system for container 
damage. They mainly focused on holes, which may 
cause damage of container loads due to leaking water. 
The authors propose a combination of the reflection of 
light (which does not exist in the case of holes), and a 
more sophisticated method based on the photometric 
stereo for reefer containers. Since that time, many new 
technologies have been invented and improved. 

İmamoğlu (2019) shows an example of the 
successful application of transfer learning with the 
VGG16 network for damage detection for containers. 
The author additionally discusses the importance of 
applying data augmentation, right parameter choice 
(layers and their numbers, activation functions, or 
learning rate), and early stopping for automatized 
container damage detection. Wang et al. (2021) applied 
a similar transfer learning approach for container 
damage detection with a MobileNetV2 network 
developed by Google. 

As the last two research items showed good 
performance in container damage detection, we 
decided to transfer this idea to our problem. As 
MobileNetV2 demonstrated better performance than 
VGG16 or InceptionNetV3, we focused on experiments 
with this network using a method similar to the one 
proposed by Wang et al. (2021), considering all trailer 
construction specialties compared with containers. 

Mujeeb et al. (2018) discuss the methods used to 
identify manufacturing defects when there are few 
defective images available. They use image 
partitioning, data augmentation, and convolutional 
autoencoders. The authors additionally show how to 
evaluate the difference between reproduced images and 
reference instances. Mao et al. (2016) and 
Sarafijanovic-Djukic and Davis (2019) proposed their 
versions of CAE (RED-Net and inception-like CAE) that 
were used in our research for semi-supervised 
learning.  

Wang et al. (2019) observe the topic of anomaly 
detection in wind turbines and focus on analyzing 
images with large resolutions. The authors suggest 
partitioning the image into smaller patches. This 
method appeared helpful for our study, though we 
chose another partitioning schema. For the CAE we 
used the Structural Similarity Index (SSIM) for the 
residual mapping, accuracy metric and loss function. 
Such an approach was proposed by Bergmann et al. 
(2019) and showed better performance than the 
traditional L2-distance metric. We also used an 
extension to this approach with additional finetuning 
step after the training of CAE proposed by Boumessouer 
(2020). 

Many authors worked on the detection of anomalies 
and damages. Some entered the area of multimodal 
transport by discussing container damages. However, 
the specific needs of inland terminals with higher 

volumes of trailers have not yet been considered. While 
there are obvious similarities to damage detection of 
containers, trailers have specific features. For instance, 
these are complex structures at the lower part of the 
trailer side with multiple straps. That is where the most 
damages are typically located, requiring special 
attention with separate data preparation and 
individually trained neural models. Thus, further 
research on ADD at inland terminals is needed. In this 
work, we therefore focus on the ADD for trailers. We 
develop deep learning algorithms to identify and rate 
the detected damages. The ADD results will be 
compared in the future with the manual inspection. If 
the ADD will be able to reach a certain fitness level, the 
staff involved in the checking process can be supported 
and the whole gate-in process is presumably getting 
much faster. 

3. Materials and Methods 

Figure 2 demonstrates the workflow of this study, 
including steps like project understanding and 
planning, data collection and preparation, model 
training, evaluation, and approach comparison. 

 
Figure 2. Workflow of the study 

3.1. Dataset and training preparation 

For both transfer and semi-supervised learning 
approaches, we used real-world images of trucks. The 
cameras took them at the OCR gate at the entrance of an 
intermodal inland terminal in Europe. Each folder with 
photos for every passing vehicle contains images for 
different trailer parts: left, right, rear, and upper part. 
The images show not only the trailer itself but also the 
driver's cabin, wheels, and surroundings. The trailer's 
position on the images differs as it might be tilted. In 
addition, the length of the images varies due to the 
different speeds of vehicles driving through the OCR 
gate. All observed damage cases are on the trailer's left 
or right sides. That is why in this research, we focus 
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only on these sides. The percentage of images of 
damaged trailers is small compared to the number of 
non-damaged cases: less than 5%. The two most 
frequent problems are cracked tarpaulin (34%) and 
improper tarpaulin patches (38%). 

For the ADD, we first processed the images, 
identified the trailer, and cut it using RetinaNet (Lin et 
al., 2017) network with ResNet (He et al., 2016) 
backbone. We first rotate the image using the 
difference between corner points' positions in degrees 
or radians to offset possible tilting. This step is 
essential as training with surfaces that do not belong to 
the trailer might result in poor performance of the ADD 
in later steps. Next, we crop the images. The model 
detects several points in the corners and at the bottom 
of the trailers which are characteristic for all instances. 

The size of the cropped trailer is still relatively large 
— around 2000×9000 pixels. Hence, it would be 
inefficient to train the detection model for the whole 
trailer surface. Additionally, training with images of 
such size is limited by the available hardware. An 
example of the partition is shown in Figure 2. It has the 
following structure: 125 patches of size 400 ×400 
pixels, while the first 100 patches (0-99) display the 
upper part and the last 25 parts (100-124) display the 
lower part of the trailer side, respectively. In the 
following, we call these parts created after the 
partitioning “images” and use them for our models. 

Because of the entirely different physical structures 
of the upper and lower parts of the trailer side, we 
propose two different approaches for ADD training:  

• train single anomaly detection model on all the 
patches together.  

• train two models separately: one for the upper 
part and another one for the lower part.  

In the case of two model training, we guarantee that 
the network for the lower part does not learn the 
unnecessary patterns typical for the upper part and vice 
versa. 

3.2. Transfer learning 

With transfer learning we can effectively use the 
knowledge collected while training the existing neural 
networks (MobileNetV2 in our case) developed for 
other similar purposes.  

We prepared a dataset of 1000 images (created at the 
partitioning step) of both classes (damaged and non-
damaged) for training on lower and upper trailer parts. 
For better accuracy, the minority class of cases 
representing trailer defects was oversampled via data 
augmentation through rotation with a maximal degree 
of 20 grades, horizontal flip, brightness adjustment, 
zooming, and shifting along the X and Y axes. For 
training the network for the whole trailer side, we used 

2000 images of both classes. Before each training, 10% 
of the whole dataset was reserved for testing (around 
100 images). At the same time, 10% of the remaining 
set was used for validation during training. 

At the beginning of the training by transfer learning, 
we excluded the top classification layers of the pre-
trained MobileNetV2 network for further feature 
extraction. Afterward, the whole convolutional base of 
the network got frozen to avoid weight change. We 
applied the global average pooling to convert features 
to a single feature vector and added the dense layer for 
the binary classification. At this point, we compiled the 
model for the first training phase using a learning rate 
= 0.0001 with “Adam” optimizer and binary cross 
entropy loss function. We made preliminary training of 
10 epochs and moved to the finetuning step. The 
finetuning was made via unfreezing all the layers 
except those at the bottom starting from the 101st 
inclusively. All other layers till 101 stayed frozen. To 
achieve better training performance, we had to 
decrease the learning rate to 0.00001 to avoid 
overfitting and switch to “RMSprop” optimizer. Then 
we proceeded with the training, whereas the maximal 
number of training epochs was set to 50. 

Additionally, we used an early stopping callback with 
10 epochs patience to avoid unnecessary training in 
case of no improvement. The reduction of the learning 
rate on the plateau was used to improve training 
performance before early stopping occurred. Finally, 
we saved the best model version with minimal 
validation loss. When the training is finished, the 
trained model is stored in the file with the Hierarchical 
Data Format version 5 (HDF5), which is suitable for 
storing complex data. 

3.3. Semi-supervised learning 

The semi-supervised approach was used at the early 
stage of the project when we had very few images of the 
trailer defects and lots of images of non-damaged 
instances.  

The basis for the semi-supervised model is the CAE, 
trained using only damage-free instances. An 
autoencoder aims to transform the input image into the 
output avoiding corruption (Baldi & Lu, 2012). The 
output of a CAE for damaged cases differs significantly 
from the initial input image, which allows for 
classifying it as an anomaly. As we do not use images of 
the damages for training, the neural network will not 
be able to represent them correctly. 

We used around 70000 images in case of training the 
models for the upper part, around 17000 for the lower 
trailer part, and around 85000 images for the model 
trained for the whole trailer side. All images represent 
negative cases with no damage. The test sets for the 
upper and lower parts of the trailer side consisted of 
around 100 images for each class.
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Figure 3. Left side of a trailer — partitioned into 125 parts 

During the training, the learning rate is additionally 
adjusted – if there are no improvements for eight 
epochs, the learning rate decreases. If this procedure 
brings no results, early stopping occurs after 11 epochs. 
Early stopping reduces the probability of overfitting 
when the neural model tends to recognize patterns only 
typical for the training dataset and will show weak 
performance while being used on a different dataset. 

At the fine-tuning step, the algorithm tries different 
thresholds for the size of the "anomaly area" from the 
observed minimal to maximal residual values with 
incrementations. It selects one that guarantees the 
highest rate of true positive and true negative 
predictions. Images where the size of the area with 
anomalies is larger than the fine-tuned threshold 
should be classified as damage cases. For this 
procedure, we used 20% of images from the test set. 

For testing, residual maps with a pixel-wise 
comparison of the initial and generated images are 
created. Additionally, it is helpful to perform a binary 
segmentation to make the difference between damaged 
and damage-free cases more visible. The generated 
image's pixels, with a loss (measured in 1-SSIM) higher 
than the threshold found in the fine-tuning step, are 
represented in white color, while "non-defect" pixels 
are in black, as shown in Figure 12. 

3.4. Software and Hardware 

We used the following software environment to 
develop and test of the ADD: Python 3.7, Keras 2.8.0, 
Tensorflow 2.8.0, Scikit-learn 0.24.2., Skimage 0.17.2. 
All computations were performed on a computer with 
AMD Ryzen 5 5600G, Nvidia GeForce RTX 3060 12 GB 
and DDR4 RAM 32 GB. For performance boost 
Tensorflow ran on the graphics card. 

4. Results and Discussion  

In the following, we first present the results of the 
approach based on transfer learning as it seems to be 
more promising. Then we show the summary of the 
experiments using the semi-supervised technique. 

 

4.1. Transfer learning approach 

The accuracy and loss histories for the training and 
validation datasets of the model for the upper trailer 
part are presented in Figure 4 and Figure 5. The 
complete training ran for 50 epochs while the early 
stopping did not occur due to the minor but constant 
improvements in the validation results.    

 
Figure 4. Training and validation accuracy curves of the transfer 
model for the upper trailer part 

 
Figure 5. Training and validation loss curves of the transfer model 
for the upper trailer part 

 

Table 1 and Table 2 demonstrate the performance 
comparison between the model trained solely for the 
lower/upper trailer parts and the common model for 
the whole trailer side.  

 

 

 



24th International Conference on Harbor, Maritime and Multimodal Logistic Modeling & Simulation, HMS 2022 
 

 
Table 1. Performance comparison of the model for the lower part and 

the model for the whole trailer side applied to the testing dataset for 

the lower part  

Metrics Model for the lower 
part  

Model for the whole 
side 

Precision 0.8859 0.8803 
Recall 0.8982 0.8956 
Accuracy 0.8896 0.8869 
F1 Score 0.8821 0.8879 

 

Table 2. Performance comparison of the model for the upper part 

and the model for the whole trailer side applied to the testing dataset 

for the upper part 

Metrics Model for the upper 
part  

Model for the whole 
side 

Precision 0.8913 0.8235 
Recall 0.82 0.7 
Accuracy 0.86 0.775 
F1 Score 0.8542 0.7567 

 

The model trained just for the upper part performs 
significantly better than the common one achieving an 
average accuracy of 86 % versus 77.5% on the test set. 
For the lower part, however, the difference is not so big. 
Almost all the performance parameters of the model 
trained exclusively for the lower part of the trailer side 
slightly outperform the results of the common model, 
except the F1 Score. 

Receiver operating characteristic (ROC) curves in 
Figure 6 and Figure 7 additionally visualize this 
performance comparison for different thresholds. 

 
Figure 6. ROC-curves of the model for the lower part and the model 
for the whole trailer side applied to the testing dataset for the lower 
part  

 

 
Figure 7. ROC-curves of the model for the upper part and the model 
for the whole trailer side applied to the testing dataset for the upper 
part 

Extra information on the model's performance 
trained only for the lower trailer part is presented with 
the confusion matrices in Figure 8 (percentage values) 
and Figure 9 (absolute values). 

 
Figure 8. Confusion matrix for the classification result (in %) of the 
model trained specially for the lower trailer part applied to the 
testing dataset for the lower part  

 

 
Figure 9. Confusion matrix for the classification result (absolute 
values) of the model trained specially for the lower trailer part 
applied to the testing dataset for the lower part 
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4.2. Semi-supervised approach 

We did preliminary testing with the half-reduced 
image set to select the best CAE for the semi-
supervised training. The best performance was 
achieved with the RED-Net and inception-like CAE 
variations. We additionally found that RED-Net worked 
appropriately both with colored and grayscale images, 
while inception-like CAE performed better in grayscale 
mode. However, training on the large image set is not 
doable for inception-CAE due to technical limitations. 
Thus, in the following, we work with RED-Net. 

Figure 10 shows the training history of the RED-Net 
for the lower trailer part. The green and red lines 
represent accuracy curves for the training and 
validation sets of images (accuracy is measured in 
SSIM). The blue and orange lines show the loss history 
for both image sets measured as 1-SSIM. Early stopping 
occurred after around 100 epochs of training, when 
both training and loss curves converged, flattened out, 
and no further improvements could be achieved. 

 
Figure 10. Training history for the upper part 

The learning rate scheduler demonstrates changes 
in the learning rate value during the training, as shown 
in Figure 11. When the model could achieve 
considerable improvements quickly, the learning rate 
had greater values in the beginning. Nevertheless, after 
around 15000 iterations, when no significant 
improvements in validation loss were detected, the 
learning rate had to be decreased from the initial value 
of 0.00065. 
 

 
Figure 11. Cyclical Learning Rate Scheduler 

The contrast in segmentation for damaged and 
anomaly-free cases is presented in Figure 12. The 
difference in white area size between the two cases is 
visible. Some patterns, e.g., parts of straps, were still 
recognized as anomalies. 

 
Figure 12. Contrast for anomaly-free areas  

The testing results (Table 3 and Table 4) of the semi-
supervised model demonstrate worse results than the 
results of the transfer learning model in all the cases.   

 

Table 3. Performance comparison of the CAE model for the lower 

part and the CAE model for the whole trailer side applied to the 

testing dataset for the lower part 

Metrics Model for the upper 
part  

Model for the whole 
side 

Precision 0.6 0.8 
Recall 0.685 0.5882 
Accuracy 0.6621 0.6200 
F1 Score 0.6397 0.6780 

 

Table 4. Performance comparison of the CAE model for the upper 

part and the CAE model for the whole trailer side applied to the 

testing dataset for the upper part 

Metrics Model for the upper 
part  

Model for the whole 
side 

Precision 0.77 0.6551 
Recall 0.6063 0.6172 
Accuracy 0.6350 0.6244 
F1 Score 0.6784 0.6356 

 

Howbeit, we still see the tendency earlier observed 
during the transfer learning — models trained 
exclusively for the upper or lower trailer provide better 
accuracy than the model for the whole trailer side. 

5. Conclusions 

The aim of the methods discussed in this paper is the 
automatic damage detection on images of trailers at 
intermodal inland terminals and thus, increase the 
efficiency of the gate-in process. This process is 
important as long dwell times of vehicles may result in 
lower attractiveness of intermodal terminals 
preventing the use of more sustainable modes of 
transport.  
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Due to the different structures and surfaces of the 
upper and the lower part of trailers, for both transfer 
and semi-supervised approaches, we developed and 
tested two separate models (for the lower and the upper 
part). 

Transfer learning with the MobileNetV2 neural 
network showed good performance for the problem of 
damage detection on the trailer surface. Due to the 
structure of the trailers compared to containers, it is 
highly recommended to train two separated models for 
the upper and lower trailer parts to achieve better 
performance in damage detection.  

Semi-supervised training could not outperform 
transfer learning model due to the complex structure of 
the trailer surface and its defects. One of its main 
weaknesses is the impossibility of differentiating 
between cases when damage and non-damage 
examples look similar. This is the case for improper and 
proper patches, for instance. However, the model based 
on transfer learning is capable of such identification if 
there is enough training data. 

In the future, we plan to improve accuracy of the 
transfer learning model after receiving more data for 
damaged cases. This model still has the potential for 
increasing complexity and can be applied not just for 
binary classification but also for the classification of 
multiple damage classes. 
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