Optimizing transportation between ports and the hinterland for decreasing impact to the environment

  • Vytautas Paulauskas 
  • Lawrence Henesey, 
  • Donatas Paulauskas, 
  • Martynas Simutis 
  • Marine Engineering Department, Klaipeda University, H. Manto 84, LT-92219, Klaipeda, Lithuania
  • Blekinge Institute of Technology, School of Computer Science, Biblioteksgatan 4, SE-374 24 Karlshamn, Sweden
Cite as
Paulauskas V., Henesey L., Paulauskas D., and Simutis M. (2022)., Optimizing transportation between ports and the hinterland for decreasing impact to the environment. Proceedings of the 24th International Conference on Harbor, Maritime and Multimodal Logistic Modeling & Simulation(HMS 2022). , 008 . DOI: https://doi.org/10.46354/i3m.2022.hms.008

Abstract

Today different transport modes use to deliver cargo between regions, from ports to final destination location or visa-versa. It is quite common to use road transport, which can deliver cargo “from door to door” but road transport causes big environmental impact. Considering alternative possibilities (road, railway and/or inland waterway transport) to decrease environmental impact from transport, it is very important. Based on theoretical and experimental tests, were find optimal solutions, which transport mode make minimum environmental impact and could be the most technically and economically effective solution. Traffic congestion on the roads, in some cases very high railway traffic in some regions, generates requirements by many stakeholders on ways to decrease the environmental impact from transport modes, which studded in Article to find and identify optimal transportation solutions with minimum environmental impact. A theoretical method evaluation conducted on the optimal transportation possibility that minimizes environmental impact. A transport modes environmental comparative index (ECI) is developed and used for evaluations. This paper presents possible alternative transportation conditions based on multi-criteria evaluation system, proposes theoretical basis for the optimal solutions from environmental and economic point of view, and provides for experimental testing during the specific case study, and finally provides recommendations and conclusions.

References

  1. C. A. Mihaela, N. Mihaela, A. Radu. 2017. Environmental Impact of Road Transport Traffic. A Case Study for County of Iaşi Road Network. Procedia Engineering, Volume 181, 2017, Pages 123-130, https://doi.org/10.1016/j.proeng
  2. Belen Martín, Emilio Ortega, Rodrigo Cuevas-Wizner, Antonio Ledda, Andrea De Montis. (2021) Assessing road network resilience: An accessibility comparative analysis. Transportation Research Part D . https://doi.org/10.1016/j.trd.2021.102851
  3. Saakian, I.; Savchuk, V. 2013. Railway transportation: problems and solutions, Problems of Economic Transition 56(3): 73–95. https://doi.org/10.2753/PET1061-1991560308
  4. Jarašūnienė, A.; Čižiūnienė, K.; Petraška, A. 2019. Research on rail and maritime transport interoperability in the area of information systems: the case of Lithuania, Transport 34(4): 467–475. https://doi.org/10.3846/transport.2019.11236
  5. Zhou, W.; You, X.; Fan, W. 2020. A mixed integer linear programming method for simultaneous multi-periodic train timetabling and routing on a high-speed rail network, Sustainability 12(3): 1131. https://doi.org/10.3390/su12031131
  6. Mańkowska M. 2019. The competitiveness of cross-border transportation networks: a case study of the Szczecin–Berlin inland waterway. Scientific Journals Zeszyty Naukowe of the Maritime University of Szczecin. 2019, 58 (130), p. 93–104. DOI: 10.17402/341
  7. Valkhof H. H., Hoogeveen T., Dallinga R. P., Toxopeus L. S. 2000. A Tug and Barge System for Sea and River Service. SNAME Annual meeting, no. 5, p. 1 – 24.
  8. M. Kwon, J. Lee, and Y. S. Hong, 2019. “Product-service system business modelling methodology using morphological analysis,” 557 Sustain., vol. 11, no. 5.
  9. Szeto, W.Y.; Lo, H.K. Transportation Network Improvement and Tolling Strategies: The Issue of Intergeneration Equity. 575 Transportation Research Part A: Policy and Practice 2006, 40, 227–243, doi:10.1016/j.tra.2005.06.004.
  10. Semenov, I.N.; Filina-Dawidowicz, L. Topology-based Approach to the Modernization of Transport and Logistics Systems with Hybrid Architecture. Part 1. Proof-of-Concept study. Arch. Transp. 2017, 43, 105–124.
  11. Adamowicz, K. 2018. Assessment of the average rate of changes in atmospheric CO emissions in OECD countries. Arch. Environ. Prot., 44, 97–102, doi:10.24425/118186.
  12. Bouman, E.A.; Lindstad, E.; Rialland, A.I.; Strømman, A.H. 2017. State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping–A review. Transport Research, Part. D Transp. Environ., 52, 408–421, doi:10.1016/j.trd.2017.03.022.
  13. Cariou, P. 2011. Is slow steaming a sustainable means of reducing CO2 emissions from container shipping? Transp. Res. Part. D Transp. Environ., 16, 260–264, doi:10.1016/j.trd.2010.12.005.
  14. Denier van der Gon, H.; Hulskotte, J. 2010. Methodologies for Estimating Shipping Emissions in the Netherlands; BOP reports 500099012, Netherlands Environmental Assessment Agency, (PBL), PO BOX 303, 3720 AH Bilthoven, The Netherlands, publication of the Netherlands Research Program on Particulate Matter: Bilthoven, The Netherlands.
  15. Di Vaio, A.; Varriale, L. 2018. Management innovation for environmental sustainability in seaports: Managerial accounting instruments and training for competitive green ports beyond the regulations. Sustainability, 10, 783. doi:10.3390/su10030783.
  16. Karl, M.; Jonson, J.E.; Uppstu, A.; Aulinger, A.; Prank, M.; Sofiev, M.; Jalkanen, J.-P.; Johansson, L.; Quante, M.; Matthias, V. 2019. Effects of ship emissions on air quality in the Baltic Sea region simulated with three different chemistry transport models. Atmos. Chem. Phys., 19, 7019–7053.
  17. Paulauskas, V., Filina-Dawidowicz, L., Paulauskas, D. 2020. The Method to Decrease Emissions from Ships in Port Areas. Sustainability, 12, 4374; doi:10.3390/su12114374, 1 – 15 p.
  18. Colette, A.; Granier, C.Ø.; Hodnebrog, Ø.H.; Jakobs, H.; Maurizi, A.; Nyiri, A.; Bessagnet, B.; D’Angiola, A.; D’Isidoro, M.; Gauss, M. 2011. Air quality trends in Europe over the past decade: A first multi-model assessment. Atmos. Chem. Phys. 11, 11657–11678, doi:10.5194/acp-11-11657-2011.
  19. Ignatavicius, G.; Toleikiene, M. 2017. Optimization of the conservation of rare and vulnerable plant species in the perspective of climate change in Lithuanian (nature) reserves. Arch. Environ. Prot., 43, 61–73, doi:10.1515/aep-2017-0032.
  20. Paulauskas, V. 2013. Ships Entering the Ports; N.I.M.S publish house: Riga, Latvia, 240p. ISBN: 9984-679-71-3.
  21. Cullinane, K.; Bergqvist, R. 2014. Emission control areas and their impact on maritime transport. Transp. Res. Part. D Transp. Environ., 28, 1–5, doi:10.1016/j.trd.2013.12.004.
  22. Penmetsa, P.; Ghosh, I.; Chandra, S. 2015. Evaluation of performance measures for two-lane intercity highways under mixed traffic conditions, Journal of Transportation Engineering 141(10): 04015021. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000787
  23. Romanovaa A., Vygnanova A., Vygnanovaa M., Sokolovaa E., Eiduks J. (2019) Problems of the formation of a single transport space on sections of international transport corridors. ICTE in Transportation and Logistics. 537-541. DOI: 10.1016/j.procs.2019.01.173
  24. Peter Wild. (2021). Recommendations for a future global CO2-calculation standard for transport and logistics. Transportation Research Part D. https://doi.org/10.1016/j.trd.2021.103024
  25. Qiaolin Hu, Weihua Gu, Shuaian Wang. (2021) Optimal subsidy scheme design for promoting intermodal freight transport. Transportation Research Part E. DOI:10.1016/j.tre.2021.102561
  26. Stojanovic D., Ivetic J., Velicˇkovic M.. (2020) Assessment of International Trade-Related Transport CO2 Emissions—A Logistics Responsibility Perspective (Sustainability). https://doi.org/10.3390/su13031138 
  27. Šakalys, R., Batarlienė, N. 2017. Research on intermodal terminal interaction in international transport corridors. Procedia Engineering 2017. 187:281-288. Available online: https://doi.org/10.1016/j.proeng.2017.04.376
  28. EU Energy and transport in figures, 2019, EC DG for energy and transport, http;//Europa.eu.int/comm/dgs/energy_transport/publication/index_en.htm.
  29. European Inland waterways map: https://unece.org/DAM/trans/main/sc3/AGN_map_2018.pdf
  30. Ypsilantis P. and Zuidwijk R., 2019. “Collaborative fleet deployment and routing for sustainable transport,” Sustainable., vol. 11, no. 20, 2019, doi: 10.3390/su11205666
  31. “Kotug forms inland shipping division based on electric pusher tugs,” 2021. https://www.offshore-energy.biz/kotug-forms-inland-shipping-division-based-on-electric-pusher-tugs/.
  32. A. Łebkowski, “Reduction of fuel consumption and pollution emissions in inland water transport by application of hybrid powertrain,” Energies, vol. 11, no. 8, 2018, doi: 10.3390/en11081981
  33. C. Hendrickx and T. Breemersch, “The Effect of Climate Change on Inland Waterway Transport,” Procedia - Soc. Behav. Sci., vol. 48, pp. 1837–1847, 2012, doi: 10.1016/j.sbspro.2012.06.1158.
  34. “Translate File: Freight transport in the EU-28 modal split of inland transport modes (% of total tonne-kilometres),” 2017. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Freight_transport_in_the_EU-28_modal_split_of_inland_transport_modes_(%25_of_total_tonne-kilometres).png&oldid=336869.
  35. B. Wiegmans and R. Konings, “Intermodal Inland Waterway Transport: Modelling Conditions Influencing Its Cost Competitiveness,” Asian J. Shipp. Logist., vol. 31, no. 2, pp. 273–294, 2015, doi: 10.1016/j.ajsl.2015.06.006.
  36. E. Kurtulus and I. B. Cetin, “Assessing the environmental benefits of dry port usage: A case of inland container transport in Turkey,” Sustain., vol. 11, no. 23, 2019, doi: 10.3390/su11236793.
  37. “Inland waterways freight transport by type of vessel,” 2018. https://ec.europa.eu/eurostat/statistics-explained.
  38. P. Mako, A. Dávid, P. Böhm, and S. Savu, “Sustainable transport in the Danube region,” Sustain., vol. 13, no. 12, pp. 1–21, 2021, doi: 10.3390/su13126797.
  39. Morales-Fusco, P., et al. 2018. Effects of RoPax shipping line strategies on freight price and transporter‘s choice. Policy implications for promoting MoS. Transport Policy 67, p. 67—76.
  40. Matuliauskas K. 2010. Grafų teorija. Vilnius university publish house.21 p.
  41. Andreae T, (1996) On independent cycles and edges in graphs, Discrete Math. 149, pp. 291 - 297.
  42. Bondy J. A., V. Chvatal V. (1976) A method in graph theory. Discrete Mathematics. Volume 15, Issue 2, 1976, Pages 111-135. https://doi.org/10.1016/0012-365X(76)90078-9.
  43. Curtis A. el.at. (2006). An implicit representation of chordal comparability graphs in linear time, in: The 32nd International Conference on Graph-Theoretic Concepts in Computer Science, in: LNCS, vol. 4271, pp. 168 - 178.
  44. Fujita S. (2005). Recent results on disjoint cycles in graphs, Electron. Notes Discrete Math. 22 (2005) pp. 409 - 412.
  45. Paria Sadeghian, Johan Hakansson, Xiaoyun Zhao. (2021) Review and evaluation of methods in transport mode detection based on GPS tracking data. Traffic and transportation engineering. 167-182.
  46. Maria Mouschoutzi, Stavros T. Ponis. (2021) A comprehensive literature review on spare parts logistics management in the maritime industry. Shipping and Logistics. https://doi.org/10.1016/j.ajsl.2021.12.003
  47. C.D. Desouza, D.J. Marsh, S.D. Beevers, N. Molden, D.C. Green. (2021) A spatial and fleet disaggregated approach to calculating the NOX emissions inventory for non-road mobile machinery in London. Atmospheric Environmet. DOI: 10.1016/j.aeaoa.2021.100125
  48. Vânia Martins, Carolina Correia, Inês Cunha-Lopes, Tiago Faria, Evangelia Diapouli, Manousos Ioannis Manousakas, Konstantinos Eleftheriadis, Susana Marta Almeida. (2021) Chemical characterisation of particulate matter in urban transport modes. Environmental Sciences.51-61. DOI:10.1016/j.jes.2020.07.008
  49. Eyring, V.; Köhler, H.W.; Lauer, A.; Lemper, B. 2005. Emissions from international shipping. Impact of future technologies on scenarios until 2050. J. Geophys. Res., 110, D17306, doi:10.1029/2004JD005620.
  50. Heinrich, L.; Koschinsky, A.; Markus, T.; Singh, P. 2020. Quantifying the fuel consumption, greenhouse gas emissions and air pollution of a potential commercial manganese nodule mining operation. Maritime Policy, 114, 103678, doi:10.1016/j.marpol.2019.103678.
  51. Czermański, E.; Pawłowska, B.; Oniszczuk-Jastrząbek, A.; Cirella, G.T. 2020. Decarbonization of maritime transport: Analysis of external costs. Front. Energy Res., 8, 28, doi:10.3389/fenrg.2020.00028.
  52. Finbowa A. S., el. at. 2009. On well-covered triangulations: Part II. Discrete Applied Mathematics 157, pp. 2799 – 2817 (www.elsevier.com/locate/dam).
  53. Behdani, B., Fan, Y., Wiegmans, B., Zuidwijk, R. 2016. Multimodal Schedule Design for Synchromodal Freight Transport Systems, European Journal of Transport and Infrastructure Research 2016 (3): p. 424-444. Available 534 online: https://doi.org/10.2139/ssrn.2438851