Model-based Data Fusion using mmWave Radar to
Evaluate Posture

  • Volkhard Klinger 
  • Department of Embedded Systems, University of Applied Science Hannover (FHDW), D-30173 Hannover, LS, Germany
Cite as
Klinger V. (2022).,Model-based Data Fusion using mmWave Radar to Evaluate Posture. Proceedings of the 11th International Workshop on Innovative Simulation for Healthcare (IWISH 2022). , 002 . DOI: https://doi.org/10.46354/i3m.2022.iwish.002

Abstract

Embedded systems are playing an increasingly important role in the field of biomedical engineering. On the basis of high-performance system architectures, mobile and networked systems with a large number of sensors and actuators can be used for research, prevention and rehabilitation. In this context, Internet of Things (IoT)-systems, which exchange information via a powerful infrastructure with databases and server systems, are also playing an increasingly important role. This paper focuses on model-based data fusion for postural injury prevention. The key point is the model-based data fusion, which has a wide spectrum and allows a high quality identification of scenarios. Model integration is demonstrated by means of an example. In addition, the integration of the model-based data fusion into the creation of a process model is classified and motivated.

CFD | CBP | Cannula

References

  1. Blasch, E. (2015). One decade of the data fusion information group (dfig) model. In SPIE Sensing Technology + Applications, page 94990L.
  2. Bohlmann, S., Klauke, A., Klinger, V., and Szczerbicka, H. (2012). Analysis of Different Search Metrics Used in Multi-Agent-Based Identification Environment. In 26th Annual Conference of the European Council for Modelling and Simulation, Koblenz, Germany
  3. Bohlmann, S., Klinger, V., and Szczerbicka, H. (2010a). System Identification with Multi-Agent-based Evolutionary Computation Using a Local Optimization Kernel. In The Ninth International Conference on Machine Learning and Applications, pages 840–845
  4. Bohlmann, S., Klinger, V., Szczerbicka, H., and Becker, M. (2010b). A data management framework providing online-connectivity in symbiotic simulation. In 24th EUROPEAN Conference on Modelling and Simulation, Simulation meets Global Challenges, Kuala Lumpur, Malaysia
  5. Bullinger, H.-J., Ilg, R., and Schmauder, M. (2013). Ergonomie: Produkt- und Arbeitsplatzgestaltung. Technologiemanagement - Wettbewerbsfähige Technologieentwicklung und Arbeitsgestaltung. Vieweg+Teubner Verlag.
  6. Chui, C. and Chen, G. (2009). Kalman Filtering: With RealTime Applications. Springer series in information sciences. Springer.
  7. Corke, P. (2017). Robotics, Vision and Control - Fundamental Algorithms in MATLAB®. Springer Tracts in Advanced Robotics. Springer, 2 edition.
  8. Hall, D., Llinas, J., and Liggins, M. (2017). Handbook of Multisensor Data Fusion: Theory and Practice, Second Edition. Electrical Engineering & Applied Signal Processing Series. CRC Press.
  9. Hall, D. L. and McMullen, S. A. H. (2004). Mathematical Techniques in Multisensor Data Fusion. Artech House information warfare library. Artech House
  10. Hartmann, B., Spallek, M., and Ellegast, R. (2013). Arbeitsbezogene Muskel-Skelett-Erkrankungen: Ursachen, Prävention, Ergonomie, Rehabilitation (mit CD-ROM). Handbuch der betriebsärztlichen Praxis. ecomed Verlagsgesellschaft in Hüthig Jehle Rehm.
  11. Hartmann, B., Spallek, M., and Ellegast, R. (2013). Arbeitsbezogene Muskel-Skelett-Erkrankungen: Ursachen, Prävention, Ergonomie, Rehabilitation (mit CD-ROM). Handbuch der betriebsärztlichen Praxis. ecomed Verlagsgesellschaft in Hüthig Jehle Rehm.
  12. Ito, T. (2008). Walking motion analysis using 3d acceleration sensors. Computer Modeling and Simulation, 2008. EMS ’08. Second UKSIM European Symposium on
    In Computer Modeling and Simulation, 2008. EMS ’08. Second UKSIM European Symposium on (2008), pp. 123-128, doi:10.1109/ems.2008.95 Key: citeulike:3390917.
  13. Klinger, V. (2015). Biosignal acquisition system for prosthesis control and rehabilitation monitoring. In Bruzzone, A., Frascio, M., Novak, V., Longo, F., Merkuryev, Y., and Novak, V., editors, 4nd International Workshop on Innovative Simulation for Health Care (IWISH 2015).
  14. Klinger, V. (2016). Rehabilitation Monitoring and Biosignal Identification using IoT-Modules. In Bruzzone, A., Frascio, M., Novak, V., Longo, F., Merkuryev, Y., and Novak, V., editors, 5n International Workshop on Innovative Simulation for Health Care (IWISH 2016).
  15. Klinger, V. (2018). An IoT-Based Platform for Rehabilitation Monitoring and Biosignal Identification. International Journal of Privacy and Health Information Management (IJPHIM), 6(1).
  16. Klinger, V. (2021). Postural Evaluation and Symptom Acquisition Based on IoT-Driven Multi-Sensor-Fusion. In Bruzzone, A., Frascio, M., Novak, V., and Eds., F. L., editors, 10th International Workshop on Innovative Simulation for Health Care (IWISH 2021).
  17. Klinger, V. and Bohlmann, S. (2020). ApplicationBased IoT-System for Pandemic Prevention Based on Platform-Approach. In Bruzzone, A., Frascio, M., Novak, V., and Eds., F. L., editors, 9th International Workshop on Innovative Simulation for Health Care (IWISH 2020).
  18. Madgwick, S., Harrison, A., and Vaidyanathan, R. (2011). Estimation of imu and marg orientation using a gradient descent algorithm. IEEE International Conference on Rehabilitation Robotics (ICORR) 70.
  19. Mahony, R., Hamel, T., and Pflimlin, J.-M. (2005). Complementary filter design on the special orthogonal group so3. In 44th IEEE Conference on Decision and Control and European Control Conference (CDC- ECC), pages 1477–1487.
  20. Munir, A., Blasch, E., Kwon, J., Kong, J., and Aved, A. (2021). Artificial intelligence and data fusion at the edge. IEEE Aerospace and Electronic Systems Magazine, 36(7):62– 78
  21. Peters, J., Lee, D. D., Kober, J., Nguyen-Tuong, D., Bagnell, D., and Schaal, S. (2016). Springer Handbook of Robotics, 2nd Edition. Springer International Publishing.
  22. Schmidt, M. and Lipson, H. (2007). Comparison of tree and graph encodings as function of problem complexity. In GECCO ’07: Proceedings of the 9th annual conference on
    Genetic and evolutionary computation, pages 1674–1679, New York, NY, USA. ACM.
  23. Steinberg, A. N., Bowman, C. L., and White, F. E. (1999). Revisions to the JDL data fusion model. In Dasarathy, B. V., editor, Sensor Fusion: Architectures, Algorithms, and Applications III, volume 3719, pages 430 – 441. International Society for Optics and Photonics, SPIE.
  24. TheMathWorks,Inc. (2021). https://mathworks.com. UnityTechnologies (2021). Unity Technologies. https://unity.com. Accessed: 2021-05-01