Applying Conformance Checking on Virtual Laboratory Experiments

  • Athanasios Sypsas ,
  • Dimitris Kalles
  • a,b  Hellenic Open University, Parodos Aristotelous 18, Patras, 263 35, Greece
Cite as
Sypsas A. ,and Kalles D. (2022).,Applying Conformance Checking on Virtual Laboratory Experiments. Proceedings of the 21st International Conference on Modelling and Applied Simulation MAS 2022). , 002 . DOI: https://doi.org/10.46354/i3m.2022.mas.002

Abstract

Conformance checking, as part of an Educational Process Mining (EPM) framework, is gaining popularity as it enables evaluating learners' behavior within a learning process. During conformance checking, the recorded logs of a process are analysed with respect to whether they match the underlying process model. In this paper, we investigate the applicability of conformance checking in determining the potential use of a particular virtual laboratory activity in an educational setting, which is different to the one that this activity was originally designed for. Our approach aims to use EPM to offer educators the ability to estimate if a specific virtual laboratory is suitable for a new educational setting with relatively limited work from his/her side. To do so, we use Unified Modeling Language (UML) Activity Diagrams (ADs) to map the problem of conformance checking to a Petri net (PN) formalism. Then, we calculate the similarity of process models representing experiments using the simulation traces of the corresponding Petri nets and the log file produced by the experiment's simulated execution in a virtual laboratory. The feasibility of our approach is demonstrated on a virtual microscoping experiment.

References

  1. Adriansyah, A. (2014).Aligning Observed and ModeledBehavior. TechnischeUniversiteit Eindhoven.https://doi.org/10.6100/IR770080
  2. Anuwatvisit, S., Tungkasthan, A., & Premchaiswadi, W.(2012). Bottleneck mining and Petri netsimulation in education situations. In

    International Conference on ICT and KnowledgeEngineering(pp. 244–251).https://doi.org/10.1109/ICTKE.2012.6408562
  3. Atanasijević-Kunc, M., & Karer, G. (2021). Modellingand simulation: adaptation of educationalprocesses to epidemic measures. In33rdEuropean Modeling & Simulation Symposium(pp.99–106).https://doi.org/10.46354/i3m.2021.emss.014
  4. Bogarín, A., Cerezo, R., & Romero, C. (2018). A surveyon educational process mining.WileyInterdisciplinary Reviews: Data Mining andKnowledge Discovery,8(1), e1230.https://doi.org/10.1002/widm.1230
  5. Cairns, A. H., Gueni, B.,Hafdi, H., Joubert, C., &Khelifa, N. (2015). Towards a distributedcomputation platform tailored for educationalprocess discovery and analysis. InInternationalConference on Protocol Engineering, ICPE 2015 andInternational Conference on New Technologies ofDistributed Systems, NTDS 2015-Proceedings(pp.1–8).https://doi.org/10.1109/NOTERE.2015.7293494
  6. Chishti, I., Basukoski, A., Chaussalet, T., & Beeknoo, N.(2018). Transformation of UML activity diagramfor enhanced reasoning. InProceedings of theFuture Technologies Conference (FTC)(Vol. 881, pp.466–482). Vancouver, Canada.https://doi.org/10.1007/978-3-030-02683-7_33
  7. Estañol, M., Munoz-Gama, J., Carmona, J., & Teniente,E. (2018). Conformance checking in UMLartifact-centric business process models.Software and Systems Modeling,18(4), 2531–2555.https://doi.org/10.1007/s10270-018-0681-6
  8. Fani Sani, M., van Zelst, S. J., & van der Aalst, W. M. P.(2020). Conformance Checking ApproximationUsing Subset Selection and Edit Distance. In S.Dustdar, E. Yu, C. Salinesi, D. Rieu, & V. Pant(Eds.),Advanced Information Systems Engineering (pp. 234–251). Cham: Springer InternationalPublishing.https://doi.org/10.1007/978-3-030-49435-3_15
  9. Ghazal, M. A., Ibrahim, O., & Salama, M. A. (2017).Educational process mining: A systematicliterature review. InProceedings-2017 EuropeanConference on Electrical Engineering and ComputerScience, EECS 2017(pp. 198–203). IEEE.https://doi.org/10.1109/EECS.2017.45
  10. Huang, E., McGinnis, L. F., & Mitchell, S. W. (2019).Verifying SysML activity diagrams using formaltransformation to Petri nets.SystemsEngineering,23(1),118–135.https://doi.org/10.1002/sys.21524
  11. Jena, A. K., Swain, S. K., & Mohapatra, D. P. (2014). Anovel approach for test case generation fromUML activity diagram.Proceedings of the 2014International Conference on Issues and Challengesin Intelligent Computing Techniques, ICICT 2014,621–629.https://doi.org/10.1109/ICICICT.2014.6781352
  12. Leemans, S. J. J., Fahland, D., & van der Aalst, W. M. P.(2018). Scalable process discovery andconformance checking.Software and SystemsModeling,17(2), 599–631.https://doi.org/10.1007/s10270-016-0545-x
  13. Murata, T. (1989). Petri Nets: Properties , Analysis andApplications.Proceedings of the IEEE,77(4), 541–580.
  14. Pechenizkiy, M., Trčka, N., Vasilyeva, E., Van DerAalst, W., & De Bra, P. (2009). Process miningonline assessment data. InEDM’09-EducationalData Mining 2009: 2nd International Conference onEducational Data Mining(pp. 279–288).
  15. Reißner, D., Conforti, R., Dumas, M., La Rosa, M., &Armas-Cervantes, A. (2017). Scalableconformance checking of business processes. Lecture Notes in Computer Science (IncludingSubseries Lecture Notes in Artificial Intelligence andLecture Notes in Bioinformatics),10573 LNCS, 607–627. https://doi.org/10.1007/978-3-319-69462-7_38
  16. Rozinat, A., & Van der Aalst, W. M. (2008).Conformance Checking of Processes Based onMonitoring Real Behavior.Information Systems,33(1), 64–95. Retrieved fromhttp://www.mathcces.rwth-aachen.de/_media/3teaching/0classes/archiv/080_ces_seminar_conformancechecking.pdfRozinat, A., & Van der Aalst, W. M. (2008).Conformance Checking of Processes Based onMonitoring Real Behavior.Information Systems,33(1), 64–95. Retrieved fromhttp://www.mathcces.rwth-aachen.de/_media/3teaching/0classes/archiv/080_ces_seminar_conformancechecking.pdf
  17. Sypsas, A, & Kalles, D. (2021). Computing SimilaritiesBetween Virtual Laboratory Experiments Modelsusing Petri Nets.In20th International Conferenceon Modelling and Applied Simulation, MAS 2021Sypsas, A, & Kalles, D. (2021). Computing SimilaritiesBetween Virtual Laboratory Experiments Modelsusing Petri Nets.In20th International Conferenceon Modelling and Applied Simulation, MAS 2021
  18. Sypsas, A, & Kalles, D. (2021). Computing SimilaritiesBetween Virtual Laboratory Experiments Modelsusing Petri Nets.In20th International Conferenceon Modelling and Applied Simulation, MAS 2021Sypsas, A, & Kalles, D. (2021). Computing SimilaritiesBetween Virtual Laboratory Experiments Modelsusing Petri Nets.In20th International Conferenceon Modelling and Applied Simulation, MAS 2021
  19. Sypsas, A., & Kalles, D. (2022). Reviewing ProcessMining Applications and Techniques inEducation.International Journalof ArtificialIntelligence & Applications (IJAIA),13(1), 83–102.https://doi.org/10.5121/ijaia.202213106
  20. Taymouri, F., & Carmona, J. (2016). A recursiveparadigm for aligning observed behavior of largestructured process models.Lecture Notes inComputerScience (Including Subseries LectureNotes in Artificial Intelligence and Lecture Notes inBioinformatics),9850 LNCS, 197–214.https://doi.org/10.1007/978-3-319-45348-4_12
  21. Taymouri, F., & Carmona, J. (2020). ComputingAlignments of Well-Formed Process.ACMTransactions on Software Engineering andMethodology,29(3), 1–41.https://doi.org/10.1145/3394056
  22. Toguyéni, A. (2021). Synthesis of Petri Nets basedcontrollers for the automation of train routing ina railway node. In20th International Conferenceon Modelling and Applied Simulation, MAS 2021 (pp. 176–185).https://doi.org/10.46354/i3m.2021.mas.022
  23. Trčka, N., Pechenizkiy, M., & van der Aalst, W. (2010).Process mining from educational data. In C.Romero, S. Ventura, M. Pechenizkiy, & R. Baker(Eds.),Handbook of Educational Data Mining(Chapman &, pp. 123–142). CRC Press.https://doi.org/10.1201/b10274
  24. Tsoni, R., Stavropoulos, E. C., & Verykios, V. S. (2019).Leveraging Learning Analytics with the Power ofWords.The Envisioning Report for EmpoweringUniversities,24, 24–26.
  25. Van Der Aalst, W. (2012). Process mining.Communications of the ACM,55(8), 76–83.https://doi.org/10.1145/2240236.2240257
  26. van Zelst, S. J., Bolt, A., Hassani, M., van Dongen, B. F.,& van der Aalst, W. M. P. (2017). Onlineconformance checking: relating event streams toprocess models using prefix-alignments.International Journal of Data Science and Analytics,8(3), 269–284.https://doi.org/10.1007/s41060-017-0078-6