A generic framework for simulation-based optimization using high-level architecture

  • Mostafa Ali,
  • Emad Mohamed,
  • Lingzi Wu,
  • Simaan AbouRizk
  • a,b,c,d  University of Alberta, Department of Civil & Environmental Engineering, 7th Floor Donadeo Innovation Centre
    for Engineering, 9211 116 Street NW, Edmonton, Alberta, T6G 1H9, Canada
Cite as
 Ali M., , Mohamed E., , Wu L., and Abourizk S., (2022).,A generic framework for simulation-based optimization using high-level architecture. Proceedings of the 21st International Conference on Modelling and Applied Simulation MAS 2022). , 005 . DOI: https://doi.org/10.46354/i3m.2022.mas.005

Abstract

Simulation optimization has been the focus of numerous studies in the area of operations research, with many studies integrating optimization algorithms with simulation models to improve decision-making. Although useful, these studies target particular applications and are built for specific problems. As such, their interoperability and reusability remain limited, with the incorporation of new optimization components or simulation models requiring a complete redesign of the entire simulation optimization system. To enhance system flexibility, a novel, generic framework that can be easily applied to any simulation model and can accompany any optimization algorithm is proposed. Using high-level architecture (HLA), the proposed framework is able to provide a communication channel between a simulation model and an optimization algorithm, facilitating the reuse of system components for different problems. A case study was used to demonstrate the functionality of the proposed framework.
Flexibility of the system was demonstrated by combining a simulation model (discrete-event simulation) with an optimization algorithm (genetic algorithm).

References

  1. AbouRizk, S., Hague, S., Ekyalimpa, R., & Newstead, S.(2016). Simphony: A next generation simulationmodelling environment for the constructiondomain.Journal of Simulation,10(3), 207–215.https://doi.org/10.1057/jos.2014.33
  2. Al-Bataineh,M., AbouRizk,S., & Parkis,H. (2013).Using simulation to plan tunnel construction.Journal of Construction Engineering and Management,139(5), 564–571.https://doi.org/10.1061/(ASCE)CO.1943-7862.0000626
  3. Alvanchi,A., Lee,S., & AbouRizk,S. (2012). Dynamics ofworking hours in construction.Journal ofConstruction Engineering and Management,138(1), 66–77. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000384
  4. Ayvaz, M. T., & Karahan, H. (2008).Asimulation/optimization model for theidentification of unknown groundwater welllocations and pumping rates.Journal of Hydrology,357(1), 76–92.https://doi.org/10.1016/j.jhydrol.2008.05.003
  5. Azimi, R., Lee, S., AbouRizk, S. M., & Alvanchi, A. (2011).A framework for an automated and integratedproject monitoring and control system for steelfabrication projects.Automation in Construction,20(1), 88–97.https://doi.org/10.1016/j.autcon.2010.07.001
  6. Carson, Y., & Maria, A. (1997). Simulation optimization:Methods and applications.Winter Simulation
    Conference Proceedings, 118–126.https://doi.org/10.1109/WSC.1997.640387
  7. Cheng, T., Feng, C., & Chen, Y. (2005). A hybridmechanism for optimizing construction simulationmodels.Automation in Construction,14(1),85–98.https://doi.org/10.1016/j.autcon.2004.07.014
  8. Cheng, T., Feng, C., & Hsu, M. (2006). An integratedmodeling mechanism for optimizing the simulationmodel of the construction operation.Automation inConstruction,15(3), 327–340.https://doi.org/10.1016/j.autcon.2005.06.016
  9. Chong, L., & Osorio, C. (2017). A simulation-basedoptimization algorithm for dynamic large-scaleurban transportation problems.TransportationScience,52(3), 637–656.https://doi.org/10.1287/trsc.2016.0717
  10. Diaz, J. A., & Perez, H.G. (2000).Simulation andoptimization of sugar cane transportation inharvest season.Winter Simulation ConferenceProceedings,2, 1114–1117.https://doi.org/10.1109/WSC.2000.899073
  11. Fikar, C., Hirsch, P., & Nolz, P. C. (2018). Agent-basedsimulation optimization for dynamic disaster reliefdistribution.Central European Journal of OperationsResearch,26(2), 423–442.https://doi.org/10.1007/s10100-017-0518-3
  12. Gates,T.K., Alshaikh,A.A., Ahmed,S.I., & Molden,D.J. (1992). Optimal irrigation delivery system designunder uncertainty.Journal of Irrigation and DrainageEngineering,118(3), 433–449. https://doi.org/10.1061/(ASCE)0733-9437(1992)118:3(433)
  13. Gaur, S., Chahar, B. R., & Graillot, D. (2011). Analyticelements method and particle swarm optimizationbased simulation–optimization model forgroundwater management.Journal of Hydrology,402(3), 217–227.https://doi.org/10.1016/j.jhydrol.2011.03.016
  14. Hwang, S., Starbuck, R., Lee, S., Choi, M., Lee, S., &Park, M.(2016). High Level Architecture (HLA) compliant distributed simulation platform fordisaster preparedness and response in facilitymanagement.Winter Simulation ConferenceProceedings, 3365–3374.https://doi.org/10.1109/WSC.2016.7822367
  15. IEEE. (2010a).IEEEStandard for Modeling and Simulation(M&S) High Level Architecture (HLA)–Object ModelTemplate (OMT) Specification.
  16. IEEE. (2010b).IEEE Standard for Modeling andSimulation (M&S) High Level Architecture (HLA)—Federate Interface Specification.
  17. Jafari, P.,Mohamed, E., Mostafa, A., Siu, M.-F. F.,Simaan, A., Jewkes, L., & Wales, R. (2018). Reactiontime optimization based on sensor data-drivensimulation for snow removal projects.ConstructionResearch Congress, 482–491.https://doi.org/10.1061/9780784481288.047
  18. Jian, W., Yang, H., & ZiYang, W. (2017). Research onmodeling and simulation of distributed supplychain based on HAS. In Y. Huang, H. Wu, H. Liu, & Z.Yin (Eds.),Intelligent Robotics and Applications(pp.401–412). Springer International Publishing.https://doi.org/10.1007/978-3-319-65298-6_37
  19. Kubis, L. (2016).darkskylib: The Dark Sky API wrapper(0.3.91) [Python; OS Independent].https://github.com/lukaskubis/darkskylib
  20. Lu, H., Wang, H., Xie, Y., & Wang, X. (2018). Study onconstruction material allocation policies: Asimulation optimization method.Automation inConstruction,90, 201–212.https://doi.org/10.1016/j.autcon.2018.02.012
  21. Neelakantan T. R. & Pundarikanthan N. V. (2000).Neural network-based simulation-optimizationmodel for reservoir operation.Journal of WaterResources Planning and Management,126(2), 57–64.https://doi.org/10.1061/(ASCE)0733-9496(2000)126:2(57)
  22. Osorio, C., & Bierlaire, M. (2013). A simulation-basedoptimization framework for urban transportationproblems.Operations Research,61(6), 1333–1345.https://doi.org/10.1287/opre.2013.1226
  23. Osorio, C., & Chong, L. (2015). A computationallyefficient simulation-based optimization algorithmfor large-scale urban transportation problems.Transportation Science,49(3), 623–636. https://doi.org/10.1287/trsc.2014.0550
  24. Osorio, C., & Selvam, K. K. (2017). Simulation-basedoptimization: Achieving computational efficiencythrough the use of multiple simulators.Transportation Science,51(2), 395–411.https://doi.org/10.1287/trsc.2016.0673
  25. Rani, D., & Moreira, M. M. (2010). Simulation–optimization modeling: A survey and potentialapplication in reservoir systems operation.WaterResources Management,24(6), 1107–1138. https://doi.org/10.1007/s11269-009-9488-0
  26. Shin, Y., Cho, H., & Kang, K.-I. (2011). Simulation modelincorporating genetic algorithms for optimaltemporary hoist planning in high-rise buildingconstruction.Automation in Construction,20(5),550–558. https://doi.org/10.1016/j.autcon.2010.11.021
  27. Simonovic, S. P. (1992). Reservoir systems analysis: Closing gap between theory and practice.Journal ofWater Resources Planning and Management,118(3),  262–280. https://doi.org/10.1061/(ASCE)0733-9496(1992)118:3(262)
  28. Xi, X., Sioshansi, R., & Marano, V. (2013).Simulation–optimization model for location of a public electricvehicle charging infrastructure.TransportationResearch Part D: Transport and Environment,22, 60–69. https://doi.org/10.1016/j.trd.2013.02.014
  29. Zacharewicz, G., Deschamps, J.-C., & Francois, J. (2011).Distributed simulation platform to design advancedRFID based freight transportation systems.Computers in Industry,62(6), 597–612.https://doi.org/10.1016/j.compind.2011.04.009
  30. Zhang, H., & Li, H. (2004). Simulation-basedoptimization for dynamic resource allocation.Automation in Construction,13(3), 409–420.https://doi.org/10.1016/j.autcon.2003.12.005