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Abstract 
Simulation optimization has been the focus of numerous studies in the area of operations research, with many studies integrating 
optimization algorithms with simulation models to improve decision-making. Although useful, these studies target particular 
applications and are built for specific problems. As such, their interoperability and reusability remain limited, with the 
incorporation of new optimization components or simulation models requiring a complete redesign of the entire simulation-
optimization system. To enhance system flexibility, a novel, generic framework that can be easily applied to any simulation model 
and can accompany any optimization algorithm is proposed. Using high-level architecture (HLA), the proposed framework is 
able to provide a communication channel between a simulation model and an optimization algorithm, facilitating the reuse of 
system components for different problems. A case study was used to demonstrate the functionality of the proposed framework. 
Flexibility of the system was demonstrated by combining a simulation model (discrete-event simulation) with an optimization 
algorithm (genetic algorithm). 
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1. Introduction 

Successful decision-making requires a thorough 
understanding of a system’s underlying behavior. As 
the complexity, uncertainty, and constraints of a 
system expand, decision-makers must increasingly 
rely on computational power for decision-making. For 
decades, simulation has allowed researchers and 
decision-makers to analyze and evaluate conditions of 
complex systems that would otherwise be impossible to 
investigate (Shannon 1998). By mimicking the overall 
logic of a system’s various activities, computer 
simulation models allow analysts to simulate a specific 
system and to configure the environmental conditions 
and the resources required to achieve system 
requirements (AbouRizk, 2010). Computer simulation, 
therefore, has become a fundamental component of 
many decision-support systems, remaining one of the 

most powerful techniques for designing and analyzing 
complex processes and systems (Azadivar, 1999; 
Shannon, 1998).  

Simulation is often used to identify ideal combinations 
of model specifications (i.e., input parameters and/or 
statistical assumptions) that lead to optimal system 
performance (April et al., 2003), which can be 
accomplished using one of two possible approaches 
(Cheng et al., 2006). The first establishes a fixed 
simulation model and examines the impact of changing 
a variable’s input values (e.g., task duration, different 
resource combinations) on system outputs (i.e., 
sensitivity analysis) (Cheng et al., 2005). The second 
approach involves testing each possible scheme of the 
model by building various simulation components and 
evaluating the performance of all resource 
combinations in each modeling scheme. Various 
performance outcomes (e.g., cost and time) derived for 
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each experimental scenario are then compared and 
used for decision-support (Cheng & Yan, 2009). 

The use of simulation to identify ideal system 
conditions, however, becomes limited as system 
complexity expands. Increasing the number of system 
resources will expand the number of possible resource 
combinations, in turn resulting in an exponential rise 
in the number of experimental scenarios (i.e., 
simulation alternatives) that must be evaluated. 
Additional techniques capable of reducing the time and 
effort required to identify ideal system conditions have, 
consequently, been developed (Cheng & Yan, 2009). 
Several research studies have investigated the 
integration of simulation models with metaheuristic 
algorithms (e.g., genetic algorithms) to solve 
optimization problems, where system resources are 
input as optimization decision variables (Salimi et al., 
2018) into metaheuristic algorithms (Alshibani & 
Moselhi, 2012; Cheng et al., 2005, 2006; Cheng & Yan, 
2009; Marzouk & Moselhi, 2004; RazaviAlavi & 
AbouRizk, 2017; Salimi et al., 2018; Zhang & Li, 2004).  

Although an improvement over previous methods, 
such as those developed by Salimi et al. (2018), many 
hybrid simulation-optimization models are specific in 
nature and built to solve particular problems. As a 
consequence, these hybrid models are inflexible, often 
requiring a complete redesign of the model if changes 
to either the optimization or simulation components 
are required. The inability to easily modify models in 
response to real system changes has considerably 
hindered the practical application of simulation-based 
optimization, particularly in sectors where analysts’ 
knowledge of simulation is limited. A flexible, generic 
framework that can be applied to any simulation 
problem, however, has yet to be developed.  

With the aim of facilitating the use of hybrid simulation 
in practice, this study has developed a novel, generic 
framework capable of improving the flexibility of 
traditional hybrid simulation-optimization models. 
Using a high-level architecture (HLA)-based approach, 
the proposed framework makes use of a newly-
developed federation object model (FOM) to facilitate 
information exchange between separate simulation 
and optimization federates (i.e., components). 
Simulation models or optimization algorithms are 
easily updated or changed without the need to redesign 
both system components which facilitates testing 
different combinations.  

2. Literature review 

2.1. Simulation optimization 

A typical optimization problem has a mathematical 
objective function and constraints used to formulate 
and evaluate candidate solutions. However, certain 
complex systems cannot be modeled mathematically. 
In these instances, optimization can be achieved by 
replacing the objective function with a simulation 

model. This results in a hybrid simulation-
optimization model that is capable of finding “the best 
input variable values from among all possibilities 
without explicitly evaluating each possibility” (Carson 
& Maria, 1997).  

Effective in applications with multiple criteria as well 
as non-parametric objectives, simulation optimization 
has been extensively applied to assist with decision-
making across a variety of engineering fields, including 
transportation (Chong & Osorio, 2017; Osorio & 
Bierlaire, 2013; Osorio & Chong, 2015; Osorio & Selvam, 
2017; Xi et al., 2013), agriculture (Diaz & Perez, 2000; 
Gates et al., 1992), reservoir operation (Neelakantan & 
Pundarikanthan, 2000; Rani & Moreira, 2010; 
Simonovic, 1992), civil and environmental engineering 
(Ayvaz & Karahan, 2008; Fikar et al., 2018; Gaur et al., 
2011; Shin et al., 2011), and project management (Cheng 
et al., 2005, 2006; Lu et al., 2018; Zhang & Li, 2004). 

2.2. High-level architecture 

Distributed simulation, also known as the High Level 
Architecture (HLA) standard (IEEE, 2010b), was 
designed to enhance system operability by facilitating 
the integration of autonomous simulation models and 
other analytical components into a single, distributed 
simulation system. The high-level architecture 
standard is comprised of three elements. The first, a 
run-time infrastructure (RTI), ensures synchronicity 
between various system components and manages the 
exchange of information between them. The second are 
the individual components (e.g., simulation models, 
optimization algorithms, and databases), hereafter 
referred to as federates. The final element is a 
federation object model (FOM), which stipulates which 
information should be shared and exchanged between 
the federates. By facilitating communication and 
coordination between individual federates, HLA 
reduces the time and cost required to develop a 
synthetic environment for new purposes, as each 
federate can be modified without the need to redesign 
all components of the system. Readers are referred to 
IEEE (2010b, 2010a) for a detailed review of the HLA 
standard. 

The HLA standard has been used to develop distributed 
simulation models across a number of sectors, 
including transportation (Zacharewicz et al., 2011), 
supply chain (Jian et al., 2017), and disaster 
management (Hwang et al., 2016). In the construction 
domain, for example, HLA has been used to develop a 
variety of decision-support systems. Azimi and 
colleagues (2011) applied HLA to integrate different 
types of simulation models to improve real-time 
decision making in steel fabrication projects. Their 
model resulted in the generation of a graphical 
representation of the steel structure, allowing project 
managers to easily visualize which portions of the 
structure were over/under budget or behind/ahead of 
schedule. An HLA-based approach was also used by 
Alvanchi and colleagues (2012) to combine discrete-
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event simulation (DES) with system dynamic models to 
evaluate productivity in construction operations. Also, 
Al-Bataineh (2013) used HLA to simulate tunneling 
operations for rapid scenario-based planning. 
Although HLA has been used to integrate simulation 
models with each other as well as with a number of 
additional components, the use of HLA to integrate 
simulation models with optimization algorithms has 
yet to be reported in literature. Indeed, an HLA-based 
framework for generating flexible simulation-based 
optimization models has yet to be developed. 

3. Methodology 

This study has developed a novel, HLA-based 
framework for increasing the flexibility and reusability 
of simulation-based optimization models. The 
proposed framework neither presumes a specific 
simulation technique nor does it model a specific 
optimization algorithm. Rather, it provides a generic 
communication proxy that works with any 
optimization algorithm, any simulation technique, or 
any combination thereof. At the core of the framework 
is an RTI that provides standard HLA services, 
including publishing, subscription, and simulation-
time management. The RTI creates a simulation 
federation that contains two federates. The 
optimization federate encapsulates an optimization 
algorithm, and the simulation federate encapsulates a 
simulation model. The two federates communicate 
with one another based on a predefined federation 
object model (FOM). The FOM defines two interaction 
classes: (1) parameters (time-stamped), which contain 
a variable array parameter, and (2) results (time-
stamped), which contain a float variable.  

The communication workflow is illustrated in Figure 1 
and detailed as follows. It is important to note that the 
communication flow does not rely on the HLA’s time-
stamped messages, but on the “next message request.” 

 
Figure 1. Proposed framework and communication workflow; dotted 
lines represent communication between federates and the RTI 

4. Case study 

To demonstrate the full functionality of the framework, 
the proposed approach was applied to a real-world case 
study. Many real-world problems are non-
deterministic polynomial-time hard (NP-hard) 
problems, which require the use of simulation models 
to solve. To demonstrate the ability of the framework to 
propose solutions for complex, NP-hard problems, the 
case study presented herein describes a problem 
incapable of being modeled using closed-form 
mathematical equations. This is in contrast to many of 
the studies described in simulation-optimization 
literature, which focus on simple, deterministic 
problems with exact solutions. 

4.1. Snow removal 

A snow removal project, based in Alberta, Canada, was 
used to demonstrate the functionality of the proposed 
approach. A DES model and a genetic algorithm 
optimization model were input into the framework to 
optimize the fleet size for snow removal operations. 
Snow removal projects are often outsourced to 
contractors. Contractors are provided with a map of the 
contract maintenance area (CMA), which illustrates the 
boundaries and scope of the CMA as well as truck shop 
locations (i.e., depots). A request for proposal (RFP), 
which mandates the maximum snow accumulation 
amount, is also provided. Contractors must then 
develop their own fleet size and truck allocation plans 
to ensure a project is completed in a cost- and time-
efficient manner while achieving performance 
requirements mandated by the RFP (Jafari et al., 2018). 
Project efficiency can increase considerably if 
resources are optimized. 

This project involves the removal of snow on a major, 
bi-directional highway with three traffic lanes in each 
direction and two depot locations. The highway is 
divided into four sections: AB, BC, BA, and CB. Shop 1 is 
located at one end of the highway (near point A), and 
Shop 2 is located at the midpoint of the highway (near 
point B). Accordingly, Section AB is assigned to Shop 1, 
while sections BA, BC, and CB are assigned to Shop 2. 
Road sections, section length, and section priority, as 
mandated in the RFP, are summarized in Table 1; the 
total accumulation of snow cannot exceed 2 
centimeters for class A+ roads. One loader is available 
at each shop for loading sand. A toe-plow is attached to 
one truck to plow two lanes, and a single truck is 
assigned to plow the third lane. Plowing and sanding 
operations occur simultaneously. Trucks are loaded 
with sand at their assigned shop. Travel speed from the 
shop location to the road is triangularly distributed 
with most-likely, minimum, and maximum values of 
40, 35, and 45 km/h, respectively. Similarly, plow speed 
is triangularly distributed with values of 50, 40, and 60 
km/h, respectively. 

A DES model was built using the aforementioned 
configurations. The simulation model was developed 
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using an in-house simulation engine, Simphony.NET 
(AbouRizk et al., 2016). 

Table 1. Road specifications 

Road Route Length (km) Class Priority 

a 

1 AB 20 A+ 4 

2 BC 17 A+ 4 
3 BA 20 A+ 4 
4 CB 17 A+ 4 

a
 Based on traffic volume 

The time period with the greatest precipitation per 
hour over the last 10 years was chosen for optimization, 
as the fleet size optimized under these conditions is 
expected to meet RFP requirements for a majority of 
snowfall events. Darkskylib, an open-source python 
wrapper for the DarkSky API (Kubis, 2016), was used to 
extract weather data for Calgary, Alberta, Canada. 
Three weather stations were positioned along the 
highway, and precipitation levels recorded by each 
station were compared over a 5-year period. Because 
differences in precipitation levels along the highway 
were minimal (Figure 2), one weather station (Location 
2) was selected for input into the model. 

Peak snowfall per hour was determined to have 
occurred on February 13, 2018, where 20 cm of snow 
accumulated on the road over 5 hours with an average 
hourly accumulation of 4 cm. Maximum snowfall 
mandated by the RFP is 2 cm, requiring plowing to be 
performed every half hour to meet requirements. The 
objective function was designed to minimize the inter-
arrival time of trucks so that each segment is cleared 
within approximately 30 minutes. Here, the 
optimization federate takes the simulation result (i.e., 
mean inter-arrival time) from the DES model, alters 
the fleet size, and returns the updated fleet size to the 
simulation model as input. As the optimization 
algorithm analyzes various fleet sizes, the optimal 
solution is approached. 

 
Figure 2. Precipitation at weather station location 1 (squares), 2 
(triangles), and 3 (circles) from November 1, 2017 through March 1, 
2018; peak snowfall event indicated by dashed circle 

5. Results and discussion 

The model was run with various resource 
combinations, as detailed in Table 2. Results obtained 

using the framework are presented in Table 2 and 
illustrated in Figure 3. Additional loaders (Scenario 4 
vs. Scenario 3) did not have a notable impact on overall 
performance, reducing mean inter-arrival time by a 
maximum of 5.4 minutes (Scenario 4: BC). Additional 
trucks, however, had a considerable impact on 
performance (Scenario 1 vs. Scenario 7), reducing mean 
inter-arrival time by 17.8 minutes for Section AB and at 
least 122 minutes for Sections BA, BC, and CB. Improved 
performance was observed up to a maximum of 10 and 
4 trucks for Shops 1 and 2, respectively (Scenario 7). 
Further increasing the number of trucks (Scenario 8 vs. 
Scenario 7) did not have a notable impact on 
performance, reducing mean inter-arrival time by less 
than 2.0 minutes. The results demonstrate that the 
framework is capable of coupling simulation with 
optimization to propose reasonable solutions for 
industrially-relevant problems. 

Table 2. Resource combination scenarios; optimized solution 

indicated in grey 

Scenario 
Shop 1 Shop 2 

Mean Inter-Arrival Time 
(min.) 

Trucks Loaders Trucks Loaders AB BA BC CB 

1 2 1 2 1 47.8 162 162 162 
2 4 1 4 1 29.9 79.1 91.4 79.9 
3 6 1 4 1 29.9 54.8 58.1 64.7 
4 6 2 4 2 29.9 51.4 52.7 59.9 
5 8 1 6 1 29.9 42.7 43.1 44.8 
6 8 1 4 1 29.9 42.4 42.7 44.6 
7 10 1 4 1 30.0 35.9 37.3 39.4 
8 12 1 4 1 29.8 34.7 35.5 37.5 

 

 
Figure 3. Mean inter-arrival time for road sections AB (solid bar), BA 
(white bar), BC (grey bar), or CB (hatched bar); target inter-arrival 
time (in minutes) indicated by dashed line 

6. Conclusion 

Integration of simulation and optimization within 
decision-support systems is essential for facilitating 
what-if and sensitivity analyses to identify near-
optimum solutions for complex processes. Integration 
of the two systems was not previously feasible due to 
incompatibility, and researchers instead relied on 
custom integrations for specific problems or domains. 
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We developed a simulation-based optimization 
framework using HLA to enable practical and effective 
communication between simulation and optimization 
components. A C#-based prototype system, which 
improves decision-making by drastically reducing the 
development effort required for each practical 
problem, was also developed. Practicality, feasibility, 
and functionality of the framework and prototype were 
demonstrated following their application to solve an 
NP-hard case study. A benefit over existing hybrid 
simulation-based optimization approaches, the 
flexibility offered by the proposed method is 
anticipated to not only spur theoretical advancements 
in the field, but also to facilitate the application and use 
of simulation-based optimization in practice. 

While the proposed method offers considerable 
advantages over previously developed methods the 
findings of this study should be interpreted in 
consideration of the following limitations. First, the 
framework uses an optimization engine to update 
parameters in the simulation model without changes to 
simulation behavior/topography. Future work 
investigating the ability of simulation model 
topography to be modified based on optimization 
candidate solutions has yet to be explored. Second, only 
discrete-event simulation was investigated here. 
Although it is expected that other types of simulation 
models (e.g., system dynamics) can be easily 
accommodated by the framework, their 
interoperability with the proposed approach should be 
evaluated.  
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