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Abstract 
The optimization of an industrial production process is a complex problem and it implies difficult decisions in terms of 
technological investments, operating costs, work organization, and economic investments. This is even more true in an 
economic context characterized by a digital transition that involves new business strategies. In this scenario, the application of 
digital technologies and multi-criteria decision-making techniques helps to identify the best strategy to improve operational 
performance. In particular, a discrete event simulation tool to optimize production performance is proposed in this study. More 
in detail, the present research presents a business model based on digitalization of an Italian SME. Firstly, a digital model (using 
a simulation software) was developed to carry out experiments and what-if scenarios of the existing production system. 
Secondly, after the analysis of the results and its discussion, the definition of the most appropriate business strategy was 
performed using the the well-known multicriteria method, Analytical Hierarchy Process (AHP). The study shows that 
simulation approach integrated with a multi criteria analysis can be a very powerful tool as a decision support system towards 
the smart factory paradigm. The studio is an academic pilot study scalable in different sectors not just the manufacturing 
sector.   
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1. Introduction 

In a globalized world, the business is accelerating and 
increasing competition exponentially (Peillon et al., 
2019). In fact, all companies are in constant 
competition, facing threats and risks characterizing a 
digital economy (Camarinha-Matos et al., 2009). In 
the current scenario, the use of disruptive 
technologies offer numerous advantages for 
improving production efficiencies in a smart 
manufacturing (Ramírez-Durán. et al., 2021; Torn, et 
al., 2019). The main characteristics of smart 
manufacturing is the process integration and 

transparency of information in real time (Culot, et al., 
2020; Rüßmann et al 2015; Pereira, et al, 2017). The 
result is a competitive environment based on 
innovations and process improvement, where the 
main objective is to maximize output while 
minimizing resource use (Kamble et al., 2018; Anderl 
et al., 2015; Mittal et al., 2018). The evolution of 
production processes also inevitably causes effects on 
the market, which is completely globalized, 
characterized by dynamism, turbulence and 
internationalization of supply (Ahn, et al., 2015). 
Customers demand attractive products at low cost, 
fast delivery and adequate quality (Mittal, et al., 2018). 
In this context, the success of industries lies in their 
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rapid ability to adapt to technological, social and 
economic conditions (Müller et al., 2018; Stentoft, et 
al., 2020). Thus, the development of a smart 
production system is identified as an effective way to 
increase the competitiveness of companies (Bi Z., et 
al., 2018; Müller et al., 2018). As pointed out by several 
studies in order to really implement smart 
manufacturing models, new digital technologies must 
be adopted in a joint and coordinated way (Lee et al., 
2015; Hofmann, et al., 2017; Reischauer, et al, 2018; 
Shi, et al, 2020; Masood, et al., 2020). These 
technologies allow total optimization of production 
processes and the qualification of the company to new 
international business scenarios (Schumacher et al., 
2016; Flores-García et al., 2021). Among the different 
digital technologies, simulation is an indispensable 
tool (Schneider et al., 2018). The simulation helps to 
virtually experience the operation of industrial 
systems in actual real operating conditions (Han Y., et 
al., 2018). Furthermore, the simulation helps to 
analyze overall performance and anticipate changes or 
interventions, reducing costs through the analysis of 
simulation scenarios (Moeuf et al., 2020; Wieland, et 
al., 2016). Through a simulation model it is possible to 
optimize the flow of materials, the use of resources 
and logistics with “what-if” analysis (Negahban et al., 
2014). Among the various simulation models, the one 
that best fits the manufacturing context is discrete 
event simulation (DES). DES is dynamic (i.e., time-
based), stochastic (i.e., variable based on probability 
functions), and rule-based from discrete events (Nam, 
et al., 2020; Banks, et al., 2010). DES can be used to 
optimize and predict performance, frequent changes 
in production orders, and unexpected events (Goerzig 
et al., 2018). Many researchers have investigated the 
benefits of integrating simulation models with multi-
criteria decision-making methods (Ortíz-Barrios et 
al., 2021; Cheng Ying et al., 2016; Gao et al., 2013).  
However, many SMEs fail to seize the opportunities of 
the digital revolution. In fact, a lack of familiarity with 
technologies and a digital literacy gap persist, mainly 
in SMEs. In this context, tools would be needed that 
can support SMEs in developing innovative business 
models and defining business strategies towards the 
smart factory in order to increase competitiveness at 
national and international level (Guizzi et al., 2019). 
The question is what are these tools? Investing in 
digital technologies could certainly help (De Felice et 
al., 2018). But alone it is not enough. It would also be 
necessary to define appropriate business strategies 
through a rigorous and scientific approach using 
multi-criteria decision-making methods. Therefore, 
the present research presents a business model based 
on digitalization of an Italian SME. Firstly, a digital 
model (using a simulation software) was developed to 
carry out experiments and what-if scenarios of the 
existing production system. Secondly, after the 
analysis of the results and its discussion, the 
definition of the most appropriate business strategy 
was performed using the the well-known multicriteria 
method, Analytical Hierarchy Process (AHP). The rest 
of the paper is organized as follows: Section 2 explains 

the materials and methods; Section 3 provides an 
overview of the experimental scenario; Section 4 and 
Section 5 summarized the results analysis (of the 
digital model created with the simulation software) 
and discussion before optimization, respectively. 
Section 6 proposes and argues the optimization 
alternatives. Finally, Section 7 outlines the main 
conclusions and future developments of the study. 

2. Materials and Methods 

2.1 Modeling and Simulation 

The simulation model developed in this research is 
based on discrete event simulation (DES). Discrete-
event simulation is a quantitative simulation method 
that allows complex systems such as reality to be 
reproduced on the computer (Mustafee, et al., 2018; 
Karnon, et al., 2014). The key elements of DES are the 
common simulation terminology and are depicted in 
Figure 1. 

 
Figure 1: DES system elements 

A DES includes entities (EN) that represent the inputs 
(I) of the system, which at the end of the process are 
transformed into outputs (O). Each entity and 
characterized by a set of attributes (AT) that uniquely 
identify them. During the execution phase, various 
system activities (A) are performed on the system 
entities by the system resources (R). A system 
resource represents the tool or medium through which 
model activities are performed. A task is performed 
using one or more model resources for a specified 
duration of time. The duration time of system 
activities depends on the nature of the activity, the 
durations can be: 

• Fixed duration time: the time allocated to the 
activity is a fixed value; 

• Probabilistic duration time: the time assigned to an 
activity incorporates randomness and variability; 

• Formula-based time duration: the time of the 
activity is calculated using an expression of some 
system variables. 

The system is described at each time instant of the 
simulation by the system state (S). This is quantified 
by a set of state variables (VR). These variables contain 
the information needed to describe the state of the 
model elements. What causes the state of the system 
to change are the events (E) that occur during 
execution. In fact, DES models are termed event-
driven, in which the updating of the system state 
occurs as events occur. The dynamics of the model 
results in a time delay (D), and the operation of the 



De Felicet et al. 
 

 

 

system is controlled through the logic model (L) (Al-
Aomar, R., et al., 2015). Figure 2 shows DES framework 
(Rodic, et al., 2017). 

 
 
Figure 2: DES framework 

The model is structured as follows: 

• The first event “start” starts the simulation at 
clock time T=0. 

• If the machine that is to execute the task is busy, 
the part is waiting until the machine becomes 
available according to the FIFO (First Input-First 
Output) discipline. 

• If the machine that is to perform the operation is 
idle, the task is executed. 

• The RNG generates a service time (s) and 
schedules the event to start at time t=T+s. 

• The RNG samples an inter-arrival time (a) and 
schedules a new event "start" at time t=T+a. 

• The simulation data are collected and the 
simulation continues. 

In DES, events include the random arrival/departure of 
entities (elements) to/from service stations 
(machines) (Meolic, R., et al., 2022). A random 
numerical generation (RNG) is used to sample the 
inter-arrival and service times (i.e., t and s) of the 
elements from the selected probability distribution 
(dos Santos, C. H., et al., 2021). For each 
arrival/departure of an element, the model logic is 
executed based on discrete-event and time-forward 
mechanisms (Moetakef-Imani, B., et al., 2009). At any 
time in the simulation clock T, an event is scheduled 
chronologically in the event list (EL) according to the 
following formulas: 

A = T + a (1) 

D = T + s (2) 

The arrival time (A) is defined as the sum of the 
current simulation clock time (T) and the inter-arrival 
time (a). While the departure time (D) is the sum of the 
current simulation clock time (T) and the service time 
(s) (Robinson, et al., 2003). The EL contains 
information about the types of events and the 
schedule of their occurrences (Mourtzis, et al.,2020). 
It is formalized as follows.  

EL={(E1,T1),(E2,T2),(E3,T3),…(En,Tn)}  [3] 

The EL is updated with each event in terms of content 
and time. the concluded event is removed from the list 
and the next most imminent event rises to the top of 
the list. other events can also enter or leave the list. 

2.2 Analytic Hierarchy Process 

The Analytic Hierarchy Process (AHP) is a multi-
criteria decision support technique developed in the 
1970s by the naturalized Iraqi American 
mathematician Thomas L. Saaty (1979). Through the 
AHP it is possible to compare several alternatives in 
relation to a plurality of criteria, quantitative or 
qualitative, and to obtain an overall evaluation for 
each of them. Therefore, you can sort the 
alternatives/criteria in order of preference and select 
the best alternative/criteria. The AHP modeling 
process is divided into the following phases (1982): 

1. Pairwise comparison and relative weight 
estimation according to Saaty’s scale. Saaty 
suggested a scale of 1-9 where a sore of 9 
represents an extreme importance over 
another element, while a score of 8 represents 
an intermediate importance between “very 
strong important” and “extreme importance” 
over another element. For a general AHP 
application, we can consider that A1, A2,…, Am 
denote a set of elements, in A  positive 
reciprocal matrix. While aij represents a 
quantified judgment on a pair of Ai, Aj. The 
result of the comparison is the so-called 
dominance coefficient aij that represents the 
relative importance of the component on row 
(i) over the component on column (j), i.e., 
aij=wi/wj (Saaty, 1996). If matrix w is a non-
zero vector, there is a λmax of Aw = λmaxw, 
which is the largest eigenvalue of the matrix A. 
If matrix A is perfectly consistent, then λmaxw 
= m. 

2. After all pairwise comparison are completed, 
the priority weight vector (w) is computed as 
the unique solution of Aw = λmaxw, where λmax 
is the largest eigenvalue of the matrix A. 

3. Consistency index estimation. Saaty proposed 
the consistency index (CI) to verify the 
consistency of the comparison matrix. The 
consistency index could then be calculated by: 
CI = (λmax−n)/ n−1. In general, if CI is less than 
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0.10, the satisfaction of the judgments may be 
derived. 

2.3 Research methodology  
From a methodological point of view, the development 
of the digital production process was developed in 
three phases as shown in Figure 3. 

 
Figure 3: Phases of the research methodology  

- Phase#1: The objective of the first phase was to 
analytically reconstruct the process. To do this, it 
was necessary to collect data and information 
through several on-site visits. Only when the 
information was deemed sufficient was it possible 
to map the existing production process through a 
flow chart shown in Figure 5. 

- Phase#2: The objective of this phase was to 
simulate the process as it is. Starting from the 
current state of the production system, the 
scenario under study was designed. Once all 
parameters were defined, the model was built in 
the Witness simulation software and simulated for 
a defined time. However, before moving on to the 
next stage, the model was validated. 

- Phase#3: In the last step, the process was 
simulated at different time intervals. The 
simulation results, automatically generated by the 
software, were studied and critically analyzed in 
order to identify optimization in the process. This 
was followed by a what-if analysis to validate 
possible solutions to intercepted bottlenecks. 

3. Experimental Scenario 

3.1 System description  
In this research, simulation was used to reproduce the 
production process of an Italian company located in 
Naples (Southern Italy). The company entered the 
manufacturing sector a few years ago with the 
production of rack cabinets for electric vehicle 

charging stations. Figure 4 shows some phases of the 
production process. 
 

 
 

Figure 4: Phases of the manufacturing process  

The use of simulation is based on the need to develop 
smart manufacturing in accordance with the industry 
4.0 paradigm. Complexity and instability characterize 
the market in which the company operates, which has 
grown exponentially in a short time. In about a year, 
customer demand has almost tripled. This has led the 
company to accelerate its production activity from a 
monthly production of one hundred cabinets to a 
weekly production of eighty. Such a change required a 
careful study of the process to avoid wasting 
resources, people or materials. The company produces 
several models of the same product, which differ 
mainly in the electrical power delivered and thus in 
size. In this research, the TX model is analyzed for the 
50 kW DC fast charging station that can charge all 
electric and plug-in hybrid vehicles. Typical charging 
times range from 15 to 30 minutes for DC charging. 
The cabinet, simply put, is the result of the assembly 
of two macro-elements: Structure and Doors. In turn, 
the structure is composed of: Base; Roof and Profiles. 
While the doors are divided into: Doors (left, right and 
front side) and Roof: rear side. The production process 
is developed in two parallel activity streams, structure 
and doors, which flow into a final stream at the end of 
the process with an assembly activity, as illustrated in 
Figure 5. It is important to point out that the company 
does not produce all the elements that make up the 
cabinet but only the base and roof, while profiles and 
doors are purchased already finished in their raw 
state. To produce the bases, sheet metal with a 
thickness of 4 mm is used, while to produce the roofs, 
sheet metal with a thickness of 3 mm is used. 
Therefore, laser cutting, part extraction, brushing, 
bending, and insertion activities are performed for 
both the base and roofs and then joined to the profiles 
through the welding activity. In both process flows, 



De Felicet et al. 
 

 

 

there is a painting activity that is not carried out in-
house but is outsourced. 
 

 
Figure 5: Flowchart Production Process 

 
3.2 Simulation model  
It is important to note that the simulation model 
reports all mapped activities except screen printing 
and brushing, which have a duration of less than one 
minute and therefore are not relevant to the process. 
Specifically, the simulation model shown in Figure 6 
consists of machines, parts, buffers and labor 
(workers). To develop the model, the following 
assumptions were made: 

• Process inputs are modeled in Witness through 
parts. Some initiate the process others are recalled 
at precise process steps.  

• Parts recalled by activities are deposited in buffers 
that represent within the model places of 
accumulation.  

• Each activity is modeled by a machine which, 
based on the number of input outputs of each, are 
distinguished: single machine, assembly machine, 
production machine. 

• Each buffer in the system has a capacity of 50 
elements.  

• A daily setup of 15 minutes is associated with the 
laser machine. 

For the activities that are part of the structure, the 
simulation was done considering the production 
of roofs; bases are included in the welding phase 
along with profiles as input elements of the 
activity. The production times of bases and roofs 
are equivalent to each other. Regarding the times 
associated with each machine, an equal number of 
measurements were taken in companies for each 
activity. In the model, it was considered 
appropriate to report an even distribution between 
the minimum and maximum value of these 
detections. The exception is laser cutting, which 
being an extremely automated machine has a 
predetermined cycle time that if repeated in every 
operation. For the paint test activities, a rejection 
rate of 5% was associated with the doors and 10% 
with the structure. While for the final testing, the 
associated rejection rate is 16%. 

Table 1 shows the input data of the model developed 
using Witness.  

 
Table 1: Simulation input data 

FLOW ACTIVITY TYPE CYCLE TIME [min] LABO
R 

STRUCTURE Roof cut Single 5.51 1 
Removing 
parts Roof 

Productio
n 

Uniform(4.3,5.5) 1 

Roof folding Single Uniform(6.17,6.2) - 
Roof 
Preparation 

Single Uniform(6.4,6.55) 2 

Insertion of 
inserts 

Single Uniform(2.28,2.46) 2 

Structure 
welding 

Assembly Uniform(57.11,59.6
) 

- 

Structure 
adjustment 

Single Uniform(57.21,61.2
) 

- 

On-line 
testing 

Single Uniform (1.6,2.02) 3 

Testing Single Uniform (1.56,3.0) 3 
Assemblay 
Cabinet on 
Base 

Assembly Uniform(29.38,38.1
7) 

- 

Insertion of 
internal 
details 

Single 1Uniform 
(5.45,6.05) 

- 

DOORS 
- 

COVER 

Spot welding Single Uniform (7.2,8.08) - 
Tig welding Single Uniform 

(4.46,5.26) 
- 

Door 
adjustment 

Single Uniform (2.41,3.37) - 

Testing Single Uniform (1.5,2.02) 4 
Left door 
Preparetion 

Single Uniform (19,21.2) - 

Right door 
Preparation 

Single Uniform(16.39,19.1
4) 

- 

Front door 
Perparation 

Single Uniform 
(21.17,23.1) 

- 

Cover 
Preparation 

Single Uniform(35.24,38.4
7) 

- 

CABINET Assembly 
Cabinet 

Assembly Uniform(18.81,21.31
) 

- 

Water test Single Uniform(15.74,16.8
8) 

4 

Testing Single Uniform (7.12,9.18) 4 
Packaging Single Uniform (5.5,8.5) - 

Figure 6 shows the model developed in the Witness 
simulation environment. 
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Figure 6: Simulation model in Witness environment 

4. Simulation Model Results Analysis before 
the optimization 

The model was simulated for three different time 
intervals representing one day, one week and one 
month of work, respectively. The number of cabinets 
produced, according to the simulated production 
process, is shown in Table 2.  

Table 2: Process production at different simulation times. 
TIME NUMBER CABINET 

One day [480 min] 4 

One week [2400 min] 34 

One month [9600] 156 

For the analysis, simulation outputs obtained by 
simulating the process for one week are considered. 
Through the Witness Statistics function, the 
simulation output data can be obtained. These data are 
nothing but the results of performance indicators that 
change according to the model element. Figure 7 
shows the state of the machines in percentage terms 
over a 40-hour shift. The machine may be busy, i.e., 
performing its task, or idle and thus waiting to work. It 
may be blocked i.e., not working because of machines 
ahead or behind it. The machine may be in a 
breakdown and/or set-up condition, which, in turn, 
may be affected by a worker waiting. 

 
Figure 7: Machines statistics 

The status of workers is shown in Table 3 in tabular 
form. The availability of workers (employed or 
inactive) and information on the number (no.) of 
activities performed is shown in percentage terms. 

 

 

 

Table 3: Labor statistics 
Labor %Busy %Idle Qt. N° Job 

Started/Ended 
Avg Job 

Time 
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1 7.8 92.1 1 143.000 5.290 
2 19.6 80.3 1 427.000 4.428 

3 6.7 93.2 1 320.000 2.035 

4 29.8 70.1 1 785.000 3.655 

 
Finally, the last statistic shown in Table 4 shows the 
condition of buffers. The information provided is 
mainly about the number of pieces within the buffer 
and the time the pieces spend there, with different 
levels of detail. 

Table 4: Buffers statistics 
Name Total 

In 
Total 
Out 

Avg Size Min Time Max Time 

B_1 96 46 48.036 0.000 9.179.992 

B_2 264 214 47.629 0.000 2.973.719 

B_Cover 121 71 41.802 170.649 6.615.599 

B_Front 121 71 45.097 177.740 6.764.137 

B_Left 121 71 45.361 194.693 6.764.137 

B_Right 121 71 45.600 204.948 6.764.137 

Buffer002 71 71 0.000 0.000 0.000 

Painting 160 160 0.000 0.000 0.000 

Painting_D 693 643 30.394 0.000 1.934.924 

Q_Base 212 162 49.862 25.622 2.974.536 

Q_Console 50 0 49.872 0.000 9.600.000 

Q_Doors 638 488 107.931 0.000 5.152.840 

Q_Profile 698 648 49.729 22.622 775.521 

Q_Roof 315 265 49.706 0.000 2.973.719 

Q_Roof2 212 162 48.509 0.000 2.975.132 

Roor_acc 0 0 0.000 0.000 0.000 

 

5. Discussion of Simulation Model Results 

Results highlighted some weaknesses as follows. 
Starting from the daily production, the expected 
weekly output would be 20 units, but there is about 
double the value. Therefore, it can be inferred that the 
production process needs set-up time. Regarding the 
buffers, it is observed that the number of input 
elements relative to the capacity of each is larger. 
Therefore, it can be assumed that the buffers, 
representing the storage systems that constitute the 
current process, are small compared to the production 
capacity. Worker statistics, on the other hand, show 
some availability. By examining these statistics it can 
be seen that some machines are locked due to the 
unavailability of a worker. A redistribution of these 
can optimize worker activity and consequently the 
process. The analysis of machine statistics is certainly 
the most complex. It emerged that many machines are 
locked for a significant period of time. To better 
investigate this condition, the two main flows, 
structure and doors/coverages, are studied separately. 
As with the whole process, we start by analyzing the 
outputs. In this case, the output of the flow is defined 
as the item returned by each machine before the 
assembly activity in which the structures are joined to 
the doors/covers. Due to the flexibility and simplicity 
of Witness, these outputs can be obtained quickly and 
are: Output of Structure flow (36) and Output of 
Doors/coverages flow (67). These results clearly show 

that the flow of structures is the slowest in the 
process. Paying attention to the statistics of this flow 
of note that all activities preceding welding and 
adjusting are significantly locked. It can be said to 
have intercepted a bottleneck in the process. However, 
this is confirmed by data collected from company 
inspections that record particularly long lead times for 
these two activities.  

6. AHP Optimization of production process 

After the analysis of the results and its discussion, the 
optimization of the process was performed in order to 
identify strategies for improving operational 
performance. Thus, an expert team was selected to 
identify the alternatives potentially affecting the 
inefficiencies of the production process. More in 
detail, te expert team was formed by 2 Production 
Engineer, 1 Quality Engineer, 1 Simulation Expert and 1 
AHP Expert. The alternative are ranked according to 
global priority, as shown in Table 5. 

Table 5: Ranking of Alternatives. 

ALTERNATIVES GLOBAL 
PRIORITIES RANKING 

A1. Low number of units 
produced 0,25 3 

A2. Inactivity of the machines 
for long periods of time 0,45 1 

A3. Inefficient organization of 
workers 0,30 2 

 
The highest global priority is the most critical 
alternative. Thus, A2 is the most critical. At this point, 
a what-if analysis was performed to assess the 
potential benefits or damages of going about changing 
the current process. Specifically, it is intended to act 
on the buffer capacity and the adjustment and welding 
activities.  
• TIG welding is performed within the production 

facility by a skilled worker using appropriate 
instrumentation. In a 4.0 perspective, an 
automated robot is implemented that 
independently performs the operation 
simultaneously on two structures taking about 10 
minutes. 

• For adjustment, on the other hand, the equipment 
now present is replaced with state-of-the-art 
systems that reduce the execution time to 15 
minutes. This workstation is also doubled in that 
the worker who was previously dedicated 
exclusively to welding is completely free with the 
introduction of the autonomous robot.  

• For the buffer the capacity is increased by 40% 
from 70 units each.  

By making this change within the simulation model, 
the outputs change significantly for both the entire 
production process and the flow: Production process 
output (284) and Structure output (220). From the 
perspective of machine condition, the change made to 
the process shows improvements. Statistics show a 
25-30 % reduction in machine blockage for the entire 
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process flow. For machines ahead of critical activities 
this condition is reduced as follows: Laser cutting: 35 
%; Extraction: 30 %.; Bending: 40%. The results 
obtained from an initial what-if analysis result 
particularly well.  

7. Conclusion   

This research shows how simulation integrated with a 
decision analysis can be a powerful tool to support the 
manufacturing sector. More in detail, the present 
research shows how the discrete-event simulation 
software, is used as a powerful tool and a valuable 
decision-making support tool. The development of the 
digital model allows a “top-down” view of the process 
without hindering or intervening in production in any 
way. Dynamic simulation, therefore, provides an 
objective assessment of alternative solutions when 
performance and impact on other systems is very 
difficult to predict. This addresses the strong business 
need for tools for anticipating, sizing and containing 
project risks. The use of simulation techniques can 
provide organizations with the means to evaluate 
Industry 4.0 principles and technologies in a virtual 
environment to improve decision-making on 
technology investments and facilitate the transition to 
the fourth industrial revolution. Future research aims 
to develop a cost-benefit analysis for the possible 
integration of robots, augmented reality, sensors, and 
cloud for a meaningful conversion to smart 
manufacturing. 
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