Digital Twins for Developing Innovative Industrial Autonomous Systems 

  • Agostino G. Bruzzone ,
  • Kirill Sinelshchikov,
  • Antonio Giovannetti, 
  • Javier Pernas 
  • a,c STRATEGOS, Simulation Team, Genoa University, via Opera Pia 15, 16145 Genova, Italy 2Simulation Team, via Magliotto2 , Savona, 17100, Italy 
  • a,b,c,d  SIM4 Future, via Trento 34, Genova, 16145, Italy 
  • a,b University of A Coruña, Campus Industrial de Ferrol, Grupo Integrado de Ingeniería, Campus de Esteiro s/n, Ferrol, 15403, Spain 
Cite as
Bruzzone A.G., Sinelshchikov K., Giovannetti A., Pernas J. (2022).,Digital twins for developing innovative industrial autonomous system. Proceedings of the 21st International Conference on Modelling and Applied Simulation MAS 2022). , 022 . DOI: https://doi.org/10.46354/i3m.2022.mas.022

Abstract

The paper addresses the development of an innovative solution based on Autonomous Systems to operated within Industrial Plants based on the advance of technologies in this sector and investing new operational frameworks. Indeed the authors propose the adoption of digital twin approach in order to support the design of this new solution as well as on the development of new procedures and policies applied to iron & steel facilities. A real-life case study with relative system architecture and common control of the real and virtual replica is analyzed. Synthetic description of obtained results is presented. 

References

  1. Bilberg, A. & Malik, A. A. (2019). Digital twin driven human–robot collaborative assembly. CIRP annals, 68(1), 499-502. 
  2. Bruzzone, A.G., Sinelshchikov, K., Cepolina, E.M., Giovannetti A. & Pernas, J. (2021). Autonomous Systems for Industrial Plants and Iron & Steel Facilities. Proceedings of the 33rd European Modeling & Simulation Symposium (EMSS 2021), pp. 418-422. 
  3. Bruzzone, A. G., Cianci, R., Sciomachen, A., Sinelshchikov, K. & Agresta, M. (2019a). A digital twin approach to develop a new autonomous system able to operate in high temperature environments within industrial plants. In Proceedings of the 2019 Summer Simulation Conference (pp. 1-11). 
  4. Bruzzone, A. G., Fancello, G., Daga, M., Leban, B. & Massei, M. (2019b). Mixed reality for industrial applications: interactions in human-machine system and modelling in immersive virtual environment. International Journal of Simulation and Process Modelling, 14(2), 165-177. 
  5. Bruzzone, A. G., Massei, M., Di Matteo, R., & Kutej, L. (2018). Introducing intelligence and autonomy into industrial robots to address operations into dangerous area. In International Conference on Modelling and Simulation for Autonomous Systems (pp. 433-444). Springer, Cham. 
  6. Bruzzone, A.G., Massei, M., Agresta, M., Di Matteo, R., Sinelshchikov, K., Longo, F., Nicoletti, L., Di Donato, L., Tommasini, L., Console, C., Ferraro, A., Pirozzi, M., Puri, D., Vita, L., Cassara, F., Mennuti, C., Augugliaro, G., Delle Site, C., Di Palo, F. & Bragatto, P. (2017). Autonomous systems & safety issues: the roadmap to enable new advances in Industrial Application. Prof. of EMSS. 
  7. Bruzzone, A.G., Massei, M., Maglione, G.L., Di Matteo, R. & Franzinetti, G. (2016a) Simulation of Manned & Autonomous Systems for Critical Infrastructure Protection. In Proceedings of DHSS, edited by Bruzzone A.G., Sottilare R.A., pp. 82-88. Genova, Italy, Dime University of Genoa. 
  8. Bruzzone, A. G., Longo F., Agresta M., Di Matteo R., Maglione G. (2016b). Autonomous systems for operations in critical environments. Prof. of the M&S of Complexity in Intelligent, Adaptive and Autonomous Systems (MSCIAAS) & Space Simulation for Planetary Space Exploration (SPACE) 
  9. Bruzzone, A. G., Massei, M., Agresta, M., Poggi, S., Camponeschi, F. & Camponeschi, M. (2014). Addressing strategic challenges on mega cities through MS2G. Proceedings of MAS, Bordeaux, France, September, 12-14. 
  10. Bruzzone, A.G., Fontane, J., Berni, A., Brizzolara, S., Longo, F., Dato, L., Poggi, S. & Dallorto, M. (2013). Simulating the marine domain as an extended framework for joint collaboration and competition among Autonomous Systems, 3rd International Defense and Homeland Security Simulation Workshop, DHSS 2013, Held at the International Multidisciplinary Modeling and Simulation Multiconference, I3M 2013, pp. 85. 
  11. Campodonico, G., Bellotti, F., Berta, R., Capello, A., Cossu, M., Gloria, A. D., Lazzaroni, L, Taccioli, T. & Davio, F. (2021). Adapting Autonomous Agents for Automotive Driving Games. In International Conference on Games and Learning Alliance (pp. 101-110). Springer, Cham. 
  12. Chen, C., Liu, Q., Lou, P., Deng, W., & Hu, J. (2020). Digital twin system of object location and grasp robot. Proceedings - 2020 5th International Conference on Mechanical, Control and Computer Engineering, ICMCCE 2020, 65–68. 
  13. Garg, G., Kuts, V., & Anbarjafari, G. (2021). Digital twin for fanuc robots: Industrial robot programming and simulation using virtual reality.  Sustainability (Switzerland), 13(18), 10336. 
  14. Kuts, V., Otto, T., Tähemaa, T. & Bondarenko, Y. (2019). Digital twin based synchronised control and simulation of the industrial robotic cell using virtual reality. Journal of Machine Engineering, 19. 
  15. Liu, X., Jiang, D., Tao, B., Jiang, G., Sun, Y., Kong, J., Tong, X., Zhao, G., & Chen, B. (2022). Genetic Algorithm-Based Trajectory Optimization for Digital Twin Robots. Frontiers in Bioengineering and Biotechnology, 9. 
  16. Liu, Y., Xu, H., Liu, D., & Wang, L. (2022). A digital twin-based sim-to-real transfer for deep reinforcement learning-enabled industrial robot grasping. Robotics and Computer-Integrated Manufacturing, 78. 
  17. Lo, C. K., Chen, C. H. & Zhong, R. Y. (2021). A review of digital twin in product design and development. Advanced Engineering Informatics, 48, 101297. 
  18. Longo, F., Nicoletti, L. & Padovano, A. (2019). Ubiquitous knowledge empowers the Smart Factory: The impacts of a Service-oriented Digital Twin on enterprises' performance. Annual Reviews in Control, 47, 221-236. 
  19. Longo, F., Chiurco, A., Musmanno, R. & Nicoletti, L. (2015). Operative and procedural cooperative training in marine ports. Journal of Computational Science, 10, 97-107. 
  20. Lumer-Klabbers, G., Hausted, J. O., Kvistgaard, J. L.,  Macedo, H. D., Frasheri, M., & Larsen, P. G. (2021).  Towards a digital twin framework for autonomous  robots. Proceedings - 2021 IEEE 45th Annual  Computers, Software, and Applications Conference,  COMPSAC 2021, 1254–1259. 
  21. Massei, M. & Tremori, A. (2011). Mobile training  solutions based on st_vp: a HLA virtual simulation  for training and virtual prototyping within ports.  Proceedings SCM MEMTS, 29-30. 
  22. Mazal, J., Bruzzone, A. G., Turi, M., Biagini, M., Corona,  F. & Jones, J. (2019a). NATO use of modelling and  simulation to evolve autonomous systems.  Complexity Challenges in Cyber Physical Systems:  Using Modeling and Simulation (M&S) to Support  Intelligence, Adaptation and Autonomy, 53-80. 
  23. Velimirovića, D., Velimirovićb, M. and Stankovića, R. (2011) ROLE AND IMPORTANCE OF KEY PERFORMANCE INDICATORS MEASUREMENT. Serbian Journal of Management 6 (1) 63 - 72
  24. Ramasubramanian, A. K., Mathew, R., Kelly, M.,  Hargaden, V., & Papakostas, N. (2022). Digital  Twin for Human-Robot Collaboration in  Manufacturing: Review and Outlook. Applied  Sciences (Switzerland), 12(10).  
  25. Qiao, Q., Wang, J., Ye, L. & Gao, R. X. (2019). Digital twin  for machining tool condition prediction. Procedia  CIRP, 81, 1388-1393.