Wind turbine pitch and active tower damping control using metaheuristic multi-objective bat optimization

  • Adrian Gambier ,
  • Yul Yunazwin Nazaruddin
  • Fraunhofer IWES, Fraunhofer Institute for Wind Energy Systems, Am Seedeich 45, Bremerhaven, 27572, Germany
  • Institut Teknologi Bandung, Bandung 40132, Indonesia
Cite as
Gambier A., and Nazaruddin Y.Y (2022).,Wind turbine pitch and active tower damping control system design using metaheuristic multi-objective bat optimization. Proceedings of the 21st International Conference on Modelling and Applied Simulation MAS 2022). , 025 . DOI: https://doi.org/10.46354/i3m.2022.mas.025

Abstract

Collective pitch control (CPC) is normally combined with an active tower dam¬ping control (ATDC) and both control loops are commonly found in the control system of very large wind turbines. Normally, each controller is fine-tuned individually. However, the control loops have a conflict of interest: whereas the CPC keeps the rotational speed constant during overrated wind speed and introduces significant oscillations in the tower subsystem, the ATDC reduces the tower oscillations while detuning the CPC. Thus, the aim of the present contribution is to find an optimal balance where cooperative tuning of both controllers leads to the best possible performance of both controllers with the fewest reciprocal negative effects. In order to achieve the goal, the multi-objective bat algorithm is utilized to obtain all controller para¬meters. The effectiveness of the methodology is shown by means of a simulation example.

References

  1. Ashuri, T., Martins, J. R. R. A., Zaaijer, M. B., van Kuik, G. A. M. and van Bussel, G. J. W. (2016). Aeroservoelastic design definition of a 20 MW common research wind turbine model. Wind Energy, 19: 2071 – 2087.
  2. Bernard, T. (2005). Multicriteria optimization of a chemical process with many constraints (in german). Procee¬dings of the GMA-Kongress - VDI-Berichte 1883, Baden-Baden, 393–399, 2005.
  3. Bianchi, F. D., de Battista, H. and Mantz, R. J. (2007). Wind Turbine Control Systems, Springer Nature, London, UK.
  4. Bossanyi, E. A. (2000). The design of closed loop controllers for wind turbines. Wind Energy, 3: 149 – 163.
  5. Bossanyi, E. A. (2003). Wind turbine control for load reduction. Wind Energy, 6: 229 – 244.
  6. Brosilow, C. and Joseph, B. (2002). Techniques of Model-Based Control, 1st edn, Prentice Hall, Upper Saddle River, USA.
  7. Burton, T., Jenkins, N., Sharpe, D. and Bossanyi, E. (2011). Wind Energy Handbook, 2nd edn, John Wiley & Sons, Chichester, UK.
  8. Coello, C. A. and S., L. M. (2002). MOPSO: a proposal for multiple objective particle swarm optimization. Proceedings of the 2002 Congress on the Evolutionary Computation, Honolulu, USA, 1051-1056, 2002.
  9. Das, I. and Dennis, J. E. (1998). Normal-Boundary Intersec¬tion: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM Journal on Optimization, 8: 631-657.
  10. Gambier, A. (2008). MPC and PID control based on multi-objective optimization. Proceedings of the 2008 American Control Conference, Seattle, 2886-2891, 2008.
  11. Gambier, A. (2017). Simultaneous design of pitch control and active tower damping of a wind turbine by using multi-objective optimization. Proceedings of the 1st IEEE Conference on Control Technology and Applications, Kohala Coast, USA, 1679 – 1684, 27–30 August 2017.
  12. Gambier, A. (2022). Control of Large Wind Energy Systems, Springer Nature, Basel, Switzerland.
  13. Gambier, A. (2022). Multiobjective optimal control of wind turbines: A survey on methods and recommendations for the implementation. Energies, 15: 567.
  14. Gambier, A. and Badreddin, E. (2007). Multi-objective optimal control: An overview. Proceedings of the IEEE Conference on Control Applications, Singapore, 170-175, 2007.
  15. Gambier, A. and Jipp, M. (2011). Multi-objective optimal control: An introduction. Proceedings of the Asian Control Conference, Kaohsiung, Taiwan, 1084 – 1089, 15–18 May 2011.
  16. Gambier, A. and Meng, F. (2019). Control system design for a 20 MW reference wind turbine. Proceedings of the 12th Asian Control Conference, Hong Kong, 258 – 263, 19–21 August 2019.
  17. Gambier, A. and Nazaruddin, Y. (2018). Collective pitch control with active tower damping of a wind turbine by using a nonlinear PID approach. IFAC–PaperOnline, 51: 238 – 243.
  18. Gambier, A., Wellenreuther, A. and Badreddin, E. (2006). A new approach to design multi-loop control systems with multiple controllers. Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, USA, 1828 – 1833, 13–15 December 2006.
  19. Gandomi, A. H., Yang, X.-S., Alavi, A. H. and Talatahari, S. (2013). Bat algorithm for constrained optimization tasks. Neural Computing and Applications, 22: 1239 – 1255.
  20. Giesy, D. (1978). Calculation of Pareto-optimal solutions to multiple-objective problems using threshold-of-acceptability constraints. IEEE Transactions on Automatic Control, 23: 1114–1115.
  21. Hansen, M. H., Hansen, A., Larsen, T. J., Øye, S., Sørensen, P. and Fuglsang, P. (2005). Control design for a pitch-regulated, variable speed wind turbine, Technical report, Risø National Laboratory, Roskilde, Denmark.
  22. Jonkman, J., Butterfield, S., Musial, W. and Scot, G. (2009). Definition of a 5-MW Reference Wind Turbine for Offshore System Development, NREL/TP-500-38060, NREL, Golden, Colorado.
  23. Leithead, W. E. and Domínguez, S. (2004). Analysis of tower/blade interaction in the cancellation of the tower fore-aft mode via control. Proceedings of the European Wind Energy Conference, London, UK, 1 – 10, 22 – 25 November 2004.
  24. Liu, G. P., Yang, J. B. and Whidborne, J. F. (2003). Multiobjective Optimisation and Control, Research Studies Press Ltd., Exeter.
  25. Li, L. and Zhou, Y. (2014). A novel complex-valued bat algorithm. Neural Computing and Applications, 25: 1369 – 1381.
  26. Manwell, J., McGowan, J. and Rogers, A. (2009). Wind energy explained: theory, design, and application, John Wiley & Sons, Chichester, UK.
  27. Murtagh, P. J., Ghosh, A., Basu, B. and Broderick, B. M. (2008). Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence. Wind Energy, 11: 305 – 317.
  28. Nickabadi, A., Ebadzadeh, M. M. and Safabakhsh, R. (2011). A novel particle swarm optimization algorithm with adaptive inertia weight. Applied Soft Computing, 11: 3658 – 3670.
  29. Ortega, R., Loria, A., Kelly, R. and Praly, L. (1994). On passivity-based output feedback global stabilization of Euler-Lagrange systems. Proceedings of the 33rd IEEE Conference on Decision and Control, Lake Buena Vista, 381 – 386, 14–16 December 1994.
  30. Rajalakshmi, M., Chandramohan, S., Kannadasan, R., Alsharif, M. H., Kim, M.-K. and Nebhen, J. (2021). Design and validation of BAT algorithm-based photovoltaic system using simplified high gain quasi boost inverter. Energies, 14: 1086.
  31. Schmitendorf, W. E. (1972). Cooperative games and vector-valued criteria problems. Proceedings of the IEEE Conference on Decision and Control, vol. 18, New Orleans, USA, 340 – 344, 13–15 December 1972.
  32. Shan, W. and Shan, M. (2012). Gain scheduling pitch control design for active tower damping and 3P harmonic reduction, Copenhagen, 2012.
  33. Takegaki, M. and Arimoto, S. (1981). A new feedback method for dynamic control of manipulators. Journal of Dynamic Systems, Measurement and Control, 103: 119 – 125.
  34. Visioli, A. (2006). Practical PID Control, Springer, London, UK.
  35. Wright, A. D. and Fingersh, L. J. (2008). Advanced control design for wind turbines, Technical Report, National Renewable Energy Laboratory (NREL), NREL/TP-500-42437, Golden, USA.
  36. Yang, X.-S. (2011). Bat algorithm for multi-objective optimisation. International Journal Bio-Inspired Compu-tation, 3: 267-274.