Real-time wind turbine simulation for pitch control purposes by using a hardware-in-the-loop approach

  • David Kenko ,
  • Adrian Gambier
  • a,b  Fraunhofer IWES, Fraunhofer Institute for Wind Energy Systems, Am Seedeich 45, Bremerhaven, 27572, Germany
Cite as
Kenko D., and Gambier A. (2022).,Real-time wind turbine simulation for pitch control purposes by using a hardware-in-the-loop approach. Proceedings of the 21st International Conference on Modelling and Applied Simulation MAS 2022). , 026 . DOI: https://doi.org/10.46354/i3m.2022.mas.026

Abstract

Because of the fact that large wind turbines are not available for research experiments and downscaled models are characterized by having different behaviors than the large ones, simulation tools become significant not only for the study of the machine dynamics but also for the control system design. However, pure digital simulation alone is insufficient for studying the performance of control algorithms since real-time operation is required for such an analysis. As a result, an interacting approach that combines wind turbine simulation and Hardware-in-the-Loop (HiL) control emerges as a promising solution. Thus, the current work proposes a system for real-time simulation and control of large-scale wind turbines based on a Hardware-in-the-Loop approach, in which a simulation tool is combined with commercial control hardware for wind turbines. The hardware-software architecture is discussed. Finally, the practical convenience of the developed system is illustrated by means of a numerical study.

References

  1. Abbott, D. (2018). Linux for Embedded and Real-time Applications 4th Edition, Newnes (Elsevier), Oxford, UK.
  2. Ashuri, T., Martins, J. R. R. A., Zaaijer, M. B., van Kuik, G. A. M. and van Bussel, G. J. W. (2016). Aeroservoelastic design definition of a 20 MW common research wind turbine model. Wind Energy, 19: 2071-2087.
  3. Åström, K. and Wittenmark, B. (1997). Computer controlled systems, 2nd edn, Prentice Hall International.
  4. Bacic, M. (2005). On hardware-in-the-loop simulation. Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference 2005, Seville, 3194-3198, 2005.
  5. Bailey, M. and Doerr, J. (1996). Contributions of hardware-in-the-loop simulations to Navy test and evaluation. Proceedings of the Society of Photo-optical Instrumentation Engineers, 2741: 33-43.
  6. Balla, J. (2011). “Dynamics of mounted automatic cannon on track vehicle”. International Journal of Mathematical Models and Methods in Applied Sciences, 5: 423 – 432.
  7. Basilios, R. and Gambier, A. (2020). Hardware-in-the-Loop simulation and control for developing very large wind energy systems. IFAC-PapersOnLine, 53: 12127 – 12132.
  8. Bélanger, J., Venne, P. and Paquin, J. N. (2010). The what, where and why of real-time simulation. Proceedings of the PES General Meeting, 37-49, 2010.
  9. Bossanyi, E. A. (2000). The design of closed loop controllers for wind turbines. Wind Energy, 3: 149 – 163.
  10. Bossanyi, E. A. (2003). GH Bladed, Version 3.6 User Manual, Garrad Hassan & Partners Limited, Bristol.
  11. Bottasso, C. L. and Croce, A. (2009). Cp-Lambda user manual, Dipartimento di Ingnegneria Aerospaziale, Politecnico di Milano, Milano.
  12. Brayanov, N. and Stoynova, A. (2019). Review of hardware-in-the-loop - a hundred years progress in the pseudo-real testing. Journal Electrotechnica and Electronica, 54: 70 − 84.
  13. Burns, A. and Wellings, A. (2009). Real-time systems and programming languages, Fourth Edition edn, Addison Wesley, Essex.
  14. Burton, T., Jenkins, N., Sharpe, and Bossanyi, E. (2011). Handbook of Wind Energy, Wiley.
  15. Evans, M. B. and Schilling, L. J. (1984). The role of simulation in the development and flight test of the HiMAT vehicle, NASA, NASA, Hampton.
  16. Faruque, M. O. and Dinavahi, V. (2010). Hardware-in-the-loop simulation of power electronic systems using adaptive discretization. IEEE Transactions on Industrial Electronics, 57: 1146-1158.
  17. Gambier, A. (2022). Control of Large Wind Energy Systems, Springer Nature, Basel, Switzerland.
  18. Gambier, A. and Meng, F. (2019). Control system design for a 20 MW reference wind turbine, Hong Kong, 2019.
  19. Garcia, L. W. (2017). Real-time operating systems. Case study: LynxOS vs. VxWorks, Florida Atlantic University, Boca Raton.
  20. Hanselmann, H. (1996). Hardware-in-the-Loop simulation testing and its integration into a CACSD toolset. Proceedings of the 1996 IEEE International Symposium on Computer-Aided Control System Design, Dearborn, USA, 152 – 156, 15–18 September 1996.
  21. Heath, M. T. (1997). Scientific Computing, McGraw-Hill, NewYork, USA.
  22. Howe, R. M. (1989). An improved numerical integration method for flight simulation. Proceedings of the AIAA Flight Simulation Technologies Conference and Exhibit, Washington D.C., 310-316, 1989.
  23. Howe, R. M. (1991). A new family of real-time redictor-corrector integration algorithms. Simulation: 177-186.
  24. Isermann, R., Schaffnit, J. and Sinsel, S. (1999). Hardware-in-the-loop simulation for the design and testing of engine-control systems. Control Engineering Practice, 7: 643-653.
  25. Jonkman, J. M. and Buhl Jr., L. M. (2005). FAST User’s Guide, NREL, Battelle.
  26. Khaled-El Feki, A. B. (2014). Distributed real-time simulation of numerical models: application to power-train, Université de Grenoble, NNT: 2014GRENT033, Université de Grenoble, Grenoble.
  27. Kiffmeier, U. (1996). A Hardware-in-the-Loop testbench for ABS controllers. Proceedings of the on Control and Diagnostics in Automotive Applications, Genova, 3-4 October 1996.
  28. Kim, J. Y., Lee, Y. J., Cheon, S. W., Lee, J. S. and Kwon, K. C. (2010). A Commercial-off-the-shelf(COTS) dedication of a QNX real time operating system (RTOS), Mumbai, 2010.
  29. Larsen, T. J. and Hansen, A. M. (2014). How 2 HAWC2, the user‘s manual, v.4.5, Risø, Roskilde.
  30. Leisten, C., Jassmann, U., Balshüsemann, J., Hakenberg, M. and Abel, D. (2017). Design and analysis of a MPC-based mechanical hardware-in-the-loop system for full-scale wind turbine system test benches. IFAC-PapersOnLine, 50: 10985 – 10991.
  31. Liu, J., Gao, X., Jiang, B., Yang, S. and Zhang, Z. (2017). Deterministic replay for multi-core VxWorks applications, Beijing, 2017.
  32. Neshati, M., Zuga, A., Jersch, T. and Wenske, J. (2016). Hardware-in-the-loop drive train control for realistic emulation of rotor torque in a full-scale wind turbine nacelle test rig. Proceedings of the 2016 European Control Conference, Aalborg, 1481-1486, 2016.
  33. Pechlivanoglou, G., Marten, D., Nayeri, C. N. and Paschereit, C. O. (2010). Integration of a wind turbine blade design tool in xfoil/xflr5, Bremen, 2010.
  34. Roscoe, A. J., Mackay, A., Burt, G. M. and McDonald, J. R. (2010). Architecture of a network-in-the-loop environment for characterizing AC power-system behavior. IEEE Transactions on Industrial Electronics, 57: 1245-1253.
  35. Sarhadi, P. and Yousefpour, S. (2015). State of the art: hardware in the loop modeling and simulation with its applications in design, development and implementa¬tion of system and control software. International Journal on Dynamics and Control, 3: 470-479.
  36. Steurer, M., Li, H., Woodruff, S., Shi, K. and Zhang, D. (2004). Development of a unified design, test, and research platform for wind energy systems based on hardware-in-the-loop real-time simulation. Proceedings of the IEEE 35th Power Electronics Specialists Conference, Aachen, Germany, 3604 – 3608, 20–25 June 2004.
  37. Takegaki, M. and Arimoto, S. (1981). A new feedback method for dynamic control of manipulators. Journal of Dynamic Systems, Measurement and Control, 103: 119 – 125.
  38. Viehweider, A., Lauss, G. and Lehfuss, F. (2011). Stabilization of power hardware-in-the-loop simulations of electric energy systems. Simulation Modelling Practice and Theory, 19: 1699 − 1708.
  39. Viehweider, A., Lehfuss, F. and Lauss, G. (2011). Power hardware-in the-loop simulations for distributed generation. Proceedings of the International Conference on Electricity Distribution, Frankfort, Germany, 1 − 4, 2011.
  40. Visioli, A. (2006). Practical PID Control, Springer, London, UK.