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Abstract
Localization, mapping, and planning are the three crucial steps to accomplishing the autonomous navigation of mobile robots in anunfamiliar environment. Since implementation of reinforcement learning (RL) algorithms for autonomous navigation in the case ofomni-directional robots is a less explored research area, and also such robots have a unique feature over differential drive robots thatthey can also produce sideways movement. Therefore, in this paper, an RL algorithm called Q-learning is used to get the safe andshortest path from a start point (SP) to a goal point (GP) in a home environment. The path trajectories are obtained by using polynomialcurve fitting. The closed-loop inverse kinematics (CLIK) algorithm is used to control a three-wheeled omni-directional mobile robot tofollow the desired path. The simulation and plotting are done using MATLAB. The simulation results show that the suggested algorithmcan effectively recognize and avoid static obstacles of different shapes and dimensions in an indoor home environment.
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1. INTRODUCTION

Autonomous navigation is one of the emerging researcharea due to availability of different machine learning (ML)algorithms and high computation power. Such navigationrequires mobile robots to follow a safe trajectory within un-known environments containing both static and dynamicobstacles. Over past few years, various ML algorithmshave been developed for autonomous navigation for dif-ferent types of obstacles in an environment (Duguleanaand Mogan (2016); Syed et al. (2014); Chen et al. (2019b)).For environments with few dynamic obstacles an algo-rithm based on reinforcement learning (RL) algorithmcalled Q-learning and neural network was proposed forthe solution of path planning problem (Duguleana and Mo-gan (2016)). The robot had the global knowledge of theenvironment during navigation. Another study proposed

an energy efficient trajectory planning method based ona ML algorithm for industrial robots (Yin et al. (2019)).The three main parts of the research work were data col-lection, modelling and optimisation process. Sometimes,active simultaneous localization and mapping (SLAM)and deep double Q-network (DDQN) algorithm are alsocombined to build the environment map and avoid obsta-cles for robot’s navigation (Wen et al. (2020)). In case ofomni-directional robot for autonomous navigation, a deepQ-learning network based approach is used which usesStochastic gradient descent method to update the trainingdata (Manh et al. (2020)). A neural network and hierar-chical reinforcement learning (HRL) based model is alsocreated for mobile robots path planning (Yu et al. (2020)).There were some drawbacks to Q-learning algorithm asit converged slowly for the optimized solution. A solutionto the problem was given in the research work by (Low

1

2724-0045  ©  2022  The  Authors.doi:  doi.org/10.46354/i3m.2022.mas.027

Proceedings  of  the  21st  International  Conference  on  Modelling  and  Applied  Simulation  (MAS), 02719th  International  Multidisciplinary  Modeling  &  Simulation  Multiconference

https://creativecommons.org/licenses/by-nc-nd/4.0/.


et al. (2019)) where flower pollination algorithm (FPA) wasused to initialize the Q-table prior to the implementationof Q-learning, giving faster optimal solutions. (Wang et al.(2020)) also resolved the issue of slow convergence rateduring the training part of DDQN. A tree-DDQN (TDDQN)was planned for dynamic path planning of wheeled mo-bile robots where the tree structure was optimized and thealgorithm was able to avoid incomplete and over-detectedpaths. At the end the best path was selected by using non-maximum suppression method. Another way to enhancethe Q-learning algorithm was adopted by (Jaradat et al.(2011)) where number of states were limited based on anew definition of states space which solved the mobilerobot navigation problem in dynamic environment.
Apart from Q-learning RL algorithm for path planningof mobile robots, one more RL algorithm, called deep de-terministic policy gradient (DDPG) is also explored forthis purpose. DDPG algorithm for single robot is extendedto Parallel DDPG algorithm for multi-robot system forconstruction and navigation task (Chen et al. (2019a)).For autonomous unmanned aerial vehicles (UAVs) landingon a moving platform, an algorithm based on deep rein-forcement learning (DRL) was provided by (Rodriguez-Ramos et al. (2018)). As per this research, for continuousaction and state domains, the DDPG algorithm providesprominent results. For mobile robots, a method for realtime path planning and obstacle avoidance is developed by(Syed et al. (2014)), which is based on an algorithm calledguided autowave pulse coupled neural network (GAPCNN).This proposed work was an improved edition of the re-cently presented model called modified pulse coupled neu-ral network (MPCNN) by considering directional autowavecontrol and dynamic thresholding technique to acceleratethe firing of neurons. To control the motion of a roboticsalamander, an RL algorithm produced a central patterngenerator (CPG) model that generates rhythmic motion(Cho et al. (2019)). Since action spaces here are continu-ous, therefore they have proposed DDPG algorithm alongwith actor-critic method. Additional works include a four-wheeled omni-directional mobile robot, which was anal-ysed for mapping and navigation based on robot operatingsystem (ROS) (Quang et al. (2019)).
Since robots generally provide services in environmentslike warehouses, restaurants, hospitals, and houses, wehave limited free space for their movements. So, we need arobot that can work in such restricted places easily and ef-ficiently. This motivates us to work on omni-wheel robots,which is a holonomic drive and has better moving flexibil-ity than nonholonomic drives. Its capability to rotate itsown vertical axis and move in any oblique direction makesit more reliable than other wheel robots. Also, nowadays,an idea has been started in which omni-wheels are in-corporated in vehicles which would be very helpful in theparking of vehicles in limited spaces. Therefore, the cur-rent work focuses on a path planning algorithm for omni-directional robotic platform.The other popular RL algorithm used for a static environ-

ment is SARSA (State-Action-Reward State-Action). Com-pared to SARSA, the Q-learning algorithm takes less com-putation time and fewer steps to reach the desired targetlocation (Sutton and Barto (2018); Sichkar (2019)). Sincethe Q-learning algorithm directly learns the optimal policy,it is also a good choice if we train our robot in a simulationenvironment. In earlier published studies the Q-learningwas implemented for a very small grid world static envi-ronment (Nair and Supriya (2018); Harwin and Supriya(2019)) and most of the studies were focused on differen-tial drive kind of robotic platform for path planning. In ourproposed research, we have considered a quite large homeenvironment with an obstacle density of around 45%, andhere we have considered a holonomic mobile platform thathas three omni-wheels for autonomous navigation.The proposed research work has the following contribu-tions: -
1. Q-learning algorithm provides a safe and shortest pathto the mobile platform to navigate through multiple staticobstacles of distinct shapes and at different positions in ahome environment.2. We improved the performance by training the Q-learning agent by eliminating the situation of getting intoa small loop and assigning high penalty values to avoiddouble steps and to go outside the environment boundary.3. By using the curve fitting technique, we have obtainedthe optimized trajectories.4. The kinematic control of the omni-wheel robot is doneusing the CLIK algorithm.
The rest of this paper is organized as follows. Section 2presents the methodology. Section 3 deals with the prob-lem formulation for this proposed work. Finally, in Sec-tions 4 and 5, detailed simulation results and conclusionsrespectively are discussed.
2. METHODOLOGY
This section describes the path planning and control algo-rithm used for the suggested work in detail.
2.1. Q-learning Algorithm

Several RL algorithms have been implemented on vari-ous categories of differential drive robots in the last fewyears. However, such algorithms implementation on threeomni-wheel robots is a less studied field. In RL, the agent(learning system) acts in the environment and learns bytrial and error to maximize its pleasure (+ reward) andminimize its pain (- reward). A policy defines what actionthe agent should choose when it is in a given situation. Ifthe state and action spaces for the environment are dis-crete and few in number, we can represent a policy witha table called Q-table. Figure 1 shows the steps used inQ-learning algorithm. The Q-function Q(s, a) is updatedusing well known Bellman equation (Low et al. (2019)).
New Q(s,a) = Q(s,a) + α[R(s,a) + γmaxQ′(s′,a′) − Q(s,a)]
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Or
New Q(s,a) = (1−α)Q(s,a)+α[R(s,a)+γmaxQ′(s′,a′)] (1)

where, Q(s, a): current Q-value, maxQ′(s′, a′): maxi-mum expected future reward given the new state (s’) andall possible actions at that new state, α: learning rate, γ:discounting factor for future rewards and R(s, a): rewardfor taking an action ‘a’ in a state ‘s’.

Figure 1. Steps in Q-learning.

2.2. Closed-loop Inverse Kinematics Algorithm

The closed-loop inverse kinematics (CLIK) algorithm is anumerical method used to approximate the solution of theinverse kinematics problem of robot manipulators basedon the explicit Euler integration that is a simple numericalintegration technique.
Conventional Inverse Kinematics (IK) using inverse Ja-cobian is given by (Rayankula and Pathak (2021)): -

q̇ = J−1(q)ẊCM (2)
Where, q, q̇ and ẊCM are joint angle, joint velocity, andvelocity vector of center of mass (CM) of mobile base (MB)respectively. J−1(q) is the inverse matrix of J(q). Here,Euler numerical integration implementation is given by,

q(tk+1) = q(tk) + J−1(q)ẊCM(t) △ t (3)
The error in the CM of mobile base position (ECM) maybe defined as,

ECM = Xref − XCM (4)

Where Xref is reference trajectory of CM of mobile robot.The time derivative of ECM is,

ĖCM = Ẋref − J(q)q̇ (5)
To ensure convergence of error to zero, a relationship isestablished between q̇ and ECM, which is defined by CLIKalgorithm,

q̇ = J−1(q)[Ẋref + KECM] (6)

Where, K is a positive definite gain matrix and choice of Kguarantees that the error uniformly converges to zero.
3. PROBLEM FORMULATION

This section explains the indoor environment used for thenavigation and kinematics modelling of the omni-wheeledplatform.
3.1. Home Environment

It is a 20×20 cells indoor home environment, which in-cludes a kitchen, a bathroom, a living room, and two bed-rooms (A and B here). The map of the environment isgenerated using colormap, which displays the image withscaled colors as shown in Figure 2. Here black color rep-resents the obstacles (-100 value in colorbar), and whitespace represents the free space (1 value in colorbar).
3.2. Omni-wheeled Robot

The mobile base consists of three omni-wheels which are120 degrees apart. The omni-wheels have small rollersaround the circumference. The effect of these rollers isthat the wheels can slide easily in a lateral direction also.Such kinds of wheels are usually used in holonomic drives.

Figure 2. Indoor environment map (20×20 cells).



Figure 3. Velocity diagram of MB (Ram et al. (2019)).

Kinematics modelling: In Figure 3, let q̇x,w and q̇y,wrepresent the linear velocities of CM of MB in the XW and
YW directions in world reference frame {W}. q̇x,g and q̇y,gare the linear velocities of CM along XG and YG directionsin body reference frame {G}. q̇o is rotational velocity ofMB about a vertical axis passing through its CM. Angularvelocities of the wheels 1, 2, and 3 about wheel axis arerepresented by ψ̇1, ψ̇2 and ψ̇3 respectively. Let r be theradius of each wheel and L be the radius of MB (Ram et al.(2019)).

The kinematic relations among CM velocities and wheelvelocities of MB in matrix form can be written as,ψ̇1
ψ̇2
ψ̇3

 = 1/r
 0 1 L
−
√3/2 −1/2 L√3/2 −1/2 L

q̇x,gq̇y,g
q̇o

 (7)

The velocities of CM of MB in frame {G} and world frame
{W} are related by,q̇x,wq̇y,w

q̇o

 =
cosqo −sinqo 0sinqo cosqo 00 0 1

q̇x,gq̇y,g
q̇o

 (8)

On combining above two equations,
ψ̇1
ψ̇2
ψ̇3

 = 1/r
 10 L
−
√3/2 −1/2 L√3/2 −1/2 L

  cosqo sinqo 0
−sinqo cosqo 0100


q̇x,wq̇y,w
q̇o

 (9)

Finally we get,
ψ̇1
ψ̇2
ψ̇3

 = 1/r
 −sinqo cosqo L
−sin(pi/3 − qo) −cos(pi/3 − qo) Lsin(pi/3 + qo) −cos(pi/3 + qo) L


q̇x,wq̇y,w
q̇o


(10)

The above equation can be rewritten as,

Table 1. Parameters for Q-learning Algorithm
ValueParameter
1Reward for free space -100Reward for obstacles 1Reward for start point (SP) +25Reward for goal point (GP) -Reward for outside the environment boundary ∞100Number of Iterations 400Max number of total stepsDiscount factor (γ 0.90)Learning rate (α 0.50)

q̇x,wq̇y,w
q̇o

 = [
JMB

] ψ̇1
ψ̇2
ψ̇3

 (11)

where, [JMB] be the mobile base Jacobian and is definedas,
[
JMB

] = r/3
−2sinqo −2sin(pi/3 − qo 2sin() pi/3 + qo)2cosqo −2cos(pi/3 − qo) −2cos(pi/3 + qo)1/L 1/L 1/L


(12)

4. RESULTS

4.1. Creation of Safe and Shortest Path using Q-
Learning

To create the safe and shortest path using Q-learning thefollowing parameters are considered: -States: Here each cell (of size 1 feet × 1 feet), represents astate. So, there are total 400 states.Actions: There are 8 possible actions at any given state:left, right, up, down and 4 oblique movements. For straightmovements the path length is 1 feet and for oblique move-ments it is 1.4 feet. Other parameters used in Q-learningare enumerated in Table 1.

Figure 4. Location of SP and GP for both the cases.
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Figure 5. Q-learning training for Case-I (a) After 10 iterations (b) After 20 iterations (c) After 30 iterations (d) After 40 iterations.

Figure 6. Q-learning training for Case-II (a) After 10 iterations (b) After 20 iterations (c) After 30 iterations (d) After 40 iterations.

The current work focuses on the simulation of omni-directional mobile robot for two different cases. The homeenvironment for the robot with SP and GP is shown in Fig-ure 4 with 1 and 2 suffix for Case-I and Case-II respectively.SP1 is in kitchen (4,4 Cell) and GP1 is in bathroom (19,3Cell). While, SP2 is in bedroom-B (18,11 Cell) and GP2 isin living room (2,16 Cell).
For an unknown environment, the robot first learnsabout the obstacles and the free space with the help ofQ-learning training algorithm. After several iterations,the robot finds the safe and shortest path from SP to GP.

Figure 7. Final optimal path for both the cases after successful training.

The training for first 40 iterations with an interval of 10iterations for Case-I and Case-II is shown in Figure 5 andFigure 6 respectively.After successful training with 100 iterations, the robotis able to find the safe and shortest path between two setpoints. The optimal path for both the cases is shown inFigure 7.The path length covered by the robot to reach the GPcan observed in Figure 8. In the initial iterations the pathcovered by the robot is longer and as the robot learns moreand more about the environment the path length decreaseswith more iterations. After 100 iterations the path lengthand steps taken for Case-I and Case-II are 25.2 feet, 23steps and 20 feet, 19 steps respectively.

Figure 8. Path length vs iterations graph for both the cases.



Figure 9. Trajectory vs time plot for both the cases.

Figure 10. Plots of desired vs actual trajectories of omni-wheeled robot forCase-I (a) x vs y (b) Trajectory vs time (c) Trajectory error vs time.

Figure 11. Plots of desired vs actual trajectories of omni-wheeled robot forCase-II (a) x vs y (b) Trajectory vs time (c) Trajectory error vs time.
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4.2. Trajectory Generation using Curve Fitting

After obtaining the safe and shortest path by Q-learning,we extract the x and y coordinates from that path and thenbest suited polynomial curve fitting is used to generate thetrajectories (x-t and y-t trajectories) as shown in Figure9.
4.3. Path Planning of Omni-wheeled Robot using CLIK

After getting the trajectories for both cases from polyno-mial curve fitting, the CLIK algorithm is used for kine-matic control of the omni-wheel robot to follow the desiredsafe and shortest path. The comparison between desiredand actual trajectory followed by the robot can be seen inFigure 10 and Figure 11 for the considered two cases. Fig-ure 10 (a) and Figure 11 (a) shows the desired path and theactual path followed by the robot. In these figures, to trackthe path of the robot four positions of the robot (A, B, C,and D) are shown at different time intervals. Figure 10 (b)and Figure 11 (b) shows the desired and actual trajectoryof the robot such that position (x and y) and orientation(ψ) of CM of MB with time and finally the error in positionand error in orientation of CM of MB with time is shownin Figure 10 (c) and Figure 11 (c). It can be clearly observedthat the robot is able to follow the desired path with signif-icant accuracy and it deviates slightly from its desired pathwhen there is a curvature in the path. The use of superiorcontrol model can avert this inadequacy.
5. CONCLUSION
The current research focuses on implementing an RL algo-rithm called Q-learning on three wheels omni-directionalrobot. The work demonstrates Q-learning applicabilitywith two different cases for a home environment with dif-ferent start and goal points. The safe and shortest pathis explored using the algorithm by training the robot in aworld with static obstacles of different shapes and sizes.Afterward, the CLIK algorithm is used for the kinematiccontrol of the omni-wheeled mobile robot to follow theexplored optimal path. The main conclusions from thecurrent work are (1) the Q-learning algorithm is able toproduce applicable results to generate an optimal path to befollowed by the omni-wheeled robot. (2) The simulationresults show that the robot is able to follow the explored op-timal path with significant accuracy in both cases. (3) Thesimulation practitioners can get an idea of how to createa custom environment for simulation in MATLAB. Theycan visualize the Q-learning training process and optimalpath graphically.The Q-learning algorithm is best suited for a static en-vironment and when the state and action spaces for theenvironment are discrete and few in number. Therefore,in general, the limitation of Q-learning is that it is not ableto recognize the dynamic obstacles and does not performwell when the state space is large and the action spaceis continuous. In future works, we hope to implement

deep reinforcement learning (DRL) algorithms that are ef-ficient in tackling complex environments with both staticand dynamic obstacles. The work will also be extended forexperimentation to test the applicability of algorithms inreal-time environments.
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