A comparative numerical simulation study for outdoor comfort indexes in courtyards
- a Victoria Patricia López-Cabeza ,
- b Eduardo Diz-Mellado ,
- c Carlos Rivera-Gómez,
- d Carmen Galán-Marín
- a,b,c,d ,Departamento de Construcciones Arquitectónicas 1, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, Avda. Reina Mercedes, 2, Seville, 41012, Spain
Cite as
Lopez Cabeza V.P., Diz-Mellado E., Rivera-Gómez C., and Galán-Marín C. (2022).,A comparative numerical simulation study for outdoor comfort indexes in courtyards. Proceedings of the 10th International Workshop on Simulation for Energy, Sustainable Development & Environment (SESDE 2022). , 003 . DOI: https://doi.org/10.46354/i3m.2022.sesde.003
Abstract
Outdoor comfort is becoming an important parameter to consider in the design of spaces given the growing concern about how the urban heat island effect increases heat stress in cities. Calculating the different comfort indexes involves the quantification of several parameters in relation to the meteorological and user conditions. There are different tools that allow comfort calculations, although the way they consider meteorological data varies, and this can alter the comfort results. This paper aims to provide a comparison between three of these tools (Rayman, ENVI-met, and Ladybug Tools) simulating three common outdoor comfort indexes (PET, SET, and UTCI) using a courtyard under hot summer conditions as a case study. The results show variations among the comfort indexes between the different tools, due to the methods that each uses to obtain the parameters needed. We conclude that the available monitored data will determine the use of the most suitable tool.
References
- ASHRAE-55. (2017). Thermal environmental conditions for human occupancy. ANSI/ASHRAE Standard - 55, 7, 6.
- ASHRAE climatic design conditions 2009/2013/2017. (n.d.). Retrieved November 16, 2019, from http://ashrae-meteo.info/
- Assis, E. S. De, Sirqueira, C. a De, Bamberg, A. M., Sustentável, P., Khalid Setaih, Neveen Hamza, T. T., Monam, A., Rückert, K., Matzarakis, A., Amelung, B., Robitu, M., Musy, M., Inard, C., Groleau, D., Ali-Toudert, F., Mayer, H., & Jorg Spangenberg, Paula Shinzato, Erik Johansson, D. D. (2013). Assessment of Outdoor Thermal Comfort in Urban. Solar Energy, 4, 1–19. http://linkinghub.elsevier.com/retrieve/pii/S0038092X06002623%5Cnhttp://linkinghub.elsevier.com/retrieve/pii/S0038092X05002574
- Berkovic, S., Yezioro, A., & Bitan, A. (2012). Study of thermal comfort in courtyards in a hot arid climate. Solar Energy, 86, 1173–1186. https://doi.org/10.1016/j.solener.2012.01.010
- Coccolo, S., Kämpf, J., Scartezzini, J. L., & Pearlmutter, D. (2016). Outdoor human comfort and thermal stress: A comprehensive review on models and standards. Urban Climate, 18, 33–57. https://doi.org/10.1016/j.uclim.2016.08.004
- Cohen, P., Potchter, O., & Matzarakis, A. (2013). Human thermal perception of Coastal Mediterranean outdoor urban environments. Applied Geography, 37(1), 1–10. https://doi.org/10.1016/j.apgeog.2012.11.001
- Diz-Mellado, E., López-Cabeza, V. P., Rivera-Gómez, C., Galán-Marín, C., Rojas-Fernández, J., & Nikolopoulou, M. (2021). Extending the adaptive thermal comfort models for courtyards. Building and Environment, 203, 108094. https://doi.org/10.1016/j.buildenv.2021.108094
- ENVI-met. (n.d.). Retrieved October 28, 2019, from https://www.envi-met.com/
- Evola, G., Costanzo, V., Magrì, C., Margani, G., Marletta, L., & Naboni, E. (2020). A novel comprehensive workflow for modelling outdoor thermal comfort and energy demand in urban canyons: Results and critical issues. Energy and Buildings, 216, 109946. https://doi.org/10.1016/j.enbuild.2020.109946
- Fiala, D., Havenith, G., Bröde, P., Kampmann, B., & Jendritzky, G. (2012). UTCI-Fiala multi-node model of human heat transfer and temperature regulation. International Journal of Biometeorology, 56(3), 429–441. https://doi.org/10.1007/s00484-011-0424-7
- Gagge, A. P., Fobelets, A. P., & Berglund, L. G. (1986). A standard predictive Index of human reponse to thermal enviroment. - OceanRep. Transactions / American Society of Heating, Refrigerating and Air-Conditioning Engineers, 92, 709–731. https://oceanrep.geomar.de/42985/
- Gál, C. V., & Kántor, N. (2020). Modeling mean radiant temperature in outdoor spaces, A comparative numerical simulation and validation study. Urban Climate, 32, 100571. https://doi.org/10.1016/j.uclim.2019.100571
- Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., & Markus Kottek, Jürgen Grieser, Christoph Beck, B. R. and F. R. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. https://doi.org/10.1127/0941-2948/2006/0130
- Kumar, P., & Sharma, A. (2020). Study on importance, procedure, and scope of outdoor thermal comfort –A review. Sustainable Cities and Society, 61, 102297. https://doi.org/10.1016/j.scs.2020.102297
- Ladybug Tools | Home Page. (n.d.). Retrieved September 4, 2020, from https://www.ladybug.tools/
- Lizana, J., L, V. P., Renaldi, R., Diz-mellado, E., Rivera-g, C., & Gal, C. (2021). Integrating courtyard microclimate in building performance simulation to mitigate extreme urban heat impacts. Sustainable Cities and Society, 103590. https://doi.org/10.1016/j.scs.2021.103590
- López-Cabeza, V. P., Galán-Marín, C., Rivera-Gómez, C., & Roa-Fernández, J. (2018). Courtyard microclimate ENVI-met outputs deviation from the experimental data. Building and Environment, 144(August), 129–141. https://doi.org/10.1016/j.buildenv.2018.08.013
- López-Cabeza, Victoria Patricia, Diz-Mellado, E., Rivera-Gómez, C., Galán-Marín, C., & Samuelson, H. W. (2022). Thermal comfort modelling and empirical validation of predicted air temperature in hot-summer Mediterranean courtyards. Journal of Building Performance Simulation, 15(1), 39–61. https://doi.org/10.1080/19401493.2021.2001571
- Matzarakis, A., & Rutz, F. (2007). Rayman: A tool for tourism and applied climatology. 3rd International Workshop on Climate, Tourism and Recreat, January 2007, 129–138.
- Matzarakis, Andreas, Mayer, H., & Iziomon, M. G. (1999). Applications of a universal thermal index: Physiological equivalent temperature. International Journal of Biometeorology, 43(2), 76–84. https://doi.org/10.1007/s004840050119
- Mauree, D., Naboni, E., Coccolo, S., Perera, A. T. D., Nik, V. M., & Scartezzini, J.-L. (2019). A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities. Renewable and Sustainable Energy Reviews, 112, 733–746. https://doi.org/10.1016/J.RSER.2019.06.005
- Naboni, E., Meloni, M., Coccolo, S., Kaempf, J., & Scartezzini, J. L. (2017). An overview of simulation tools for predicting the mean radiant temperature in an outdoor space. Energy Procedia, 122, 1111–1116. https://doi.org/10.1016/j.egypro.2017.07.471
- Potchter, O., Cohen, P., Lin, T. P., & Matzarakis, A. (2018). Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. In Science of the Total Environment (Vols. 631–632, pp. 390–406). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2018.02.276
- Rivera-Gómez, C., Diz-Mellado, E., Galán-Marín, C., & López-Cabeza, V. (2019). Tempering potential-based evaluation of the courtyard microclimate as a combined function of aspect ratio and outdoor temperature. Sustainable Cities and Society, 51(July), 101740. https://doi.org/10.1016/j.scs.2019.101740
- Santamouris, Mat. (2001). Energy and Climate in the Urban Built Environment (M. Santamouris (Ed.)). Routledge.
- UTCI - Universal Thermal Climate Index. (n.d.). Retrieved June 3, 2020, from http://www.utci.org/
Volume Details
Volume Title
Proceedings of the 10th International Workshop on Simulation for Energy, Sustainable Development & Environment (SESDE 2022)
Conference Location and Date
Rome, Italy
September 19-21, 2022
Conference ISSN
2724-0061
Volume ISBN
978-88-85741-82-9
Volume Editors
Agostino G. Bruzzone
MITIM-DIME, University of Genoa, Italy
Janos Sebestyen Janosy
Centre for Energy Research Hungarian Academy of Sciences, Hungary
Letizia Nicoletti
CAL-TEK S.r.l., Italy
Gregory Zacharewicz
École des mines d'Alès, France
Massimiliano Schiraldi
University of Rome Tor Vergata, Italy
SESDE 2022 Board
Janos Sebestyen Janosy
General Co-Chair
Centre for Energy Research Hungarian Academy of Sciences, Hungary
Gregory Zacharewicz
General Co-Chair
IMS Université Bordeaux, France
Letizia Nicoletti
Program Co-Chair
CAL-TEK S.r.l., Italy
Massimiliano Schiraldi
Program Co-Chair
University of Rome Tor Vergata, Italy
Copyright
© 2022 The Authors. The articles are open access and distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) license.