A comparative numerical simulation study for outdoor comfort indexes in courtyards

  • Victoria Patricia López-Cabeza 
  • Eduardo Diz-Mellado 
  • Carlos Rivera-Gómez
  • Carmen Galán-Marín
  • a,b,c,d ,Departamento de Construcciones Arquitectónicas 1, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, Avda. Reina Mercedes, 2, Seville, 41012, Spain
Cite as
Lopez Cabeza V.P., Diz-Mellado E., Rivera-Gómez C., and Galán-Marín C. (2022).,A comparative numerical simulation study for outdoor comfort indexes in courtyards. Proceedings of the 10th International Workshop on Simulation for Energy, Sustainable Development & Environment (SESDE 2022). , 003 . DOI: https://doi.org/10.46354/i3m.2022.sesde.003

Abstract

Outdoor comfort is becoming an important parameter to consider in the design of spaces given the growing concern about how the urban heat island effect increases heat stress in cities. Calculating the different comfort indexes involves the quantification of several parameters in relation to the meteorological and user conditions. There are different tools that allow comfort calculations, although the way they consider meteorological data varies, and this can alter the comfort results. This paper aims to provide a comparison between three of these tools (Rayman, ENVI-met, and Ladybug Tools) simulating three common outdoor comfort indexes (PET, SET, and UTCI) using a courtyard under hot summer conditions as a case study. The results show variations among the comfort indexes between the different tools, due to the methods that each uses to obtain the parameters needed. We conclude that the available monitored data will determine the use of the most suitable tool.

References

  1. ASHRAE-55. (2017). Thermal environmental conditions for human occupancy. ANSI/ASHRAE Standard - 55, 7, 6.
  2. ASHRAE climatic design conditions 2009/2013/2017. (n.d.). Retrieved November 16, 2019, from http://ashrae-meteo.info/
  3. Assis, E. S. De, Sirqueira, C. a De, Bamberg, A. M., Sustentável, P., Khalid Setaih, Neveen Hamza, T. T., Monam, A., Rückert, K., Matzarakis, A., Amelung, B., Robitu, M., Musy, M., Inard, C., Groleau, D., Ali-Toudert, F., Mayer, H., & Jorg Spangenberg, Paula Shinzato, Erik Johansson, D. D. (2013). Assessment of Outdoor Thermal Comfort in Urban. Solar Energy, 4, 1–19. http://linkinghub.elsevier.com/retrieve/pii/S0038092X06002623%5Cnhttp://linkinghub.elsevier.com/retrieve/pii/S0038092X05002574
  4. Berkovic, S., Yezioro, A., & Bitan, A. (2012). Study of thermal comfort in courtyards in a hot arid climate. Solar Energy, 86, 1173–1186. https://doi.org/10.1016/j.solener.2012.01.010
  5. Coccolo, S., Kämpf, J., Scartezzini, J. L., & Pearlmutter, D. (2016). Outdoor human comfort and thermal stress: A comprehensive review on models and standards. Urban Climate, 18, 33–57. https://doi.org/10.1016/j.uclim.2016.08.004
  6. Cohen, P., Potchter, O., & Matzarakis, A. (2013). Human thermal perception of Coastal Mediterranean outdoor urban environments. Applied Geography, 37(1), 1–10. https://doi.org/10.1016/j.apgeog.2012.11.001
  7. Diz-Mellado, E., López-Cabeza, V. P., Rivera-Gómez, C., Galán-Marín, C., Rojas-Fernández, J., & Nikolopoulou, M. (2021). Extending the adaptive thermal comfort models for courtyards. Building and Environment, 203, 108094. https://doi.org/10.1016/j.buildenv.2021.108094
  8. ENVI-met. (n.d.). Retrieved October 28, 2019, from https://www.envi-met.com/
  9. Evola, G., Costanzo, V., Magrì, C., Margani, G., Marletta, L., & Naboni, E. (2020). A novel comprehensive workflow for modelling outdoor thermal comfort and energy demand in urban canyons: Results and critical issues. Energy and Buildings, 216, 109946. https://doi.org/10.1016/j.enbuild.2020.109946
  10. Fiala, D., Havenith, G., Bröde, P., Kampmann, B., & Jendritzky, G. (2012). UTCI-Fiala multi-node model of human heat transfer and temperature regulation. International Journal of Biometeorology, 56(3), 429–441. https://doi.org/10.1007/s00484-011-0424-7
  11. Gagge, A. P., Fobelets, A. P., & Berglund, L. G. (1986). A standard predictive Index of human reponse to thermal enviroment. - OceanRep. Transactions / American Society of Heating, Refrigerating and Air-Conditioning Engineers, 92, 709–731. https://oceanrep.geomar.de/42985/
  12. Gál, C. V., & Kántor, N. (2020). Modeling mean radiant temperature in outdoor spaces, A comparative numerical simulation and validation study. Urban Climate, 32, 100571. https://doi.org/10.1016/j.uclim.2019.100571
  13. Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., & Markus Kottek, Jürgen Grieser, Christoph Beck, B. R. and F. R. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. https://doi.org/10.1127/0941-2948/2006/0130
  14. Kumar, P., & Sharma, A. (2020). Study on importance, procedure, and scope of outdoor thermal comfort –A review. Sustainable Cities and Society, 61, 102297. https://doi.org/10.1016/j.scs.2020.102297
  15. Ladybug Tools | Home Page. (n.d.). Retrieved September 4, 2020, from https://www.ladybug.tools/
  16. Lizana, J., L, V. P., Renaldi, R., Diz-mellado, E., Rivera-g, C., & Gal, C. (2021). Integrating courtyard microclimate in building performance simulation to mitigate extreme urban heat impacts. Sustainable Cities and Society, 103590. https://doi.org/10.1016/j.scs.2021.103590
  17. López-Cabeza, V. P., Galán-Marín, C., Rivera-Gómez, C., & Roa-Fernández, J. (2018). Courtyard microclimate ENVI-met outputs deviation from the experimental data. Building and Environment, 144(August), 129–141. https://doi.org/10.1016/j.buildenv.2018.08.013
  18. López-Cabeza, Victoria Patricia, Diz-Mellado, E., Rivera-Gómez, C., Galán-Marín, C., & Samuelson, H. W. (2022). Thermal comfort modelling and empirical validation of predicted air temperature in hot-summer Mediterranean courtyards. Journal of Building Performance Simulation, 15(1), 39–61. https://doi.org/10.1080/19401493.2021.2001571
  19. Matzarakis, A., & Rutz, F. (2007). Rayman: A tool for tourism and applied climatology. 3rd International Workshop on Climate, Tourism and Recreat, January 2007, 129–138.
  20. Matzarakis, Andreas, Mayer, H., & Iziomon, M. G. (1999). Applications of a universal thermal index: Physiological equivalent temperature. International Journal of Biometeorology, 43(2), 76–84. https://doi.org/10.1007/s004840050119
  21. Mauree, D., Naboni, E., Coccolo, S., Perera, A. T. D., Nik, V. M., & Scartezzini, J.-L. (2019). A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities. Renewable and Sustainable Energy Reviews, 112, 733–746. https://doi.org/10.1016/J.RSER.2019.06.005
  22. Naboni, E., Meloni, M., Coccolo, S., Kaempf, J., & Scartezzini, J. L. (2017). An overview of simulation tools for predicting the mean radiant temperature in an outdoor space. Energy Procedia, 122, 1111–1116. https://doi.org/10.1016/j.egypro.2017.07.471
  23. Potchter, O., Cohen, P., Lin, T. P., & Matzarakis, A. (2018). Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. In Science of the Total Environment (Vols. 631–632, pp. 390–406). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2018.02.276
  24. Rivera-Gómez, C., Diz-Mellado, E., Galán-Marín, C., & López-Cabeza, V. (2019). Tempering potential-based evaluation of the courtyard microclimate as a combined function of aspect ratio and outdoor temperature. Sustainable Cities and Society, 51(July), 101740. https://doi.org/10.1016/j.scs.2019.101740
  25. Santamouris, Mat. (2001). Energy and Climate in the Urban Built Environment (M. Santamouris (Ed.)). Routledge.
  26. UTCI - Universal Thermal Climate Index. (n.d.). Retrieved June 3, 2020, from http://www.utci.org/